تشخیص اتانول بواسطه الکترود الکل دهیدروژناز اصلاح شده با آنتراکوئینون و نانولوله های کربنی چند دیواره کربوکسیل دار

نویسنده

دانشگاه گیلان - دانشکده علوم گروه زیست شناسی

چکیده

سنجش اتانول برپایه تولید سیگنال از نیکوتین آمید آدنین دی نوکلوتید NAD که اساس فعالیت آنزیم است تولید می شود. آنتراکوئینون 2 کربوکسیلیک اسید AQ بعنوان حدواسط انتقال الکترون به NAD از آنزیم الکل دهیدروژنازADH متصل می شود تا انتقال الکترون به سطح تسهیل گردد. همچنین نانولوله های کربنی چند دیواره کربوکسیله با هدایت الکتریکی بالا MWCNT قادر می سازد که پروتئین را برروی سطح گسترده تثبیت شود. براین اساس MWCNT ها را در ابتدا بواسطه عامل اکسنده نیتریک اسید 65 و امواج التراسونیک بصورت کربوکسیله عامل دار شدند. مطالعات طیف سنجی فروسرخ و میکروسکوپ الکترونی SEM عامل دار شدن MWCNT را تایید می کند. فعالیت الکتروکاتالیتیکی جهت احیای NAD توسطAQ و MWCNT با قابلیت اکسیدواحیا ارتقا یافته است. اتصال کوالان بین گروه کربوکسیلیک اسید از آنتراکوئینون یا نانولوله های کربنی با گروه آمین از NAD صورت می گیرد. الکترود CNT/AQ-NAD/ADH پاسخ های آمپرومتری جهت تشخیص اتانول در شرایط بهینه در محدوده خطی بین 34/3 تا بالای 8/22 میکرو مولار تولید می کند. این الکترود ولتاموگرام های شبه برگشت پذیر را در 562/0- و 488/0- ولت نشان می دهد. تهیه الکترود CNT/AQ-NAD دستاوردی جهت زیست حسگرهای الکتروشیمیایی مبتنی بر دهیدروژناز ها می باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Detection of Ethanol by Alcohol Dehydrogenase Modified Electrode with Anthraquinone and Carboxylated Multiwalled Carbon Nanotubes

نویسنده [English]

  • Mostafa Shourian
چکیده [English]

The detection of ethanol is based on the signal produced by nicotinamide adenine dinucleotide NAD, the product of the enzymatic reaction. Anthraquinone 2-carboxylic acid AQ as electron shuttling mediator was attached to NAD of alcohol dehydrogenase ADH to facilitate the electron transferring. Also, multiwalled carbon nanotubes MWCNTs for the high electrical conductivity, MWCNTs capability for functionalization and large surface were used as carriers for protein immobilization. Based on, MWCNTs at first were functionalized with carboxyl groups by oxidation with nitric acid 65 and ultrasonic dispersion. FTIR and SEM studies confirm the formation of carboxylic acid functionalized MWCNTs. The electrocatalytic activities of AQ and MWCNT improve towards the reduction of NAD. Covalent attachment of carboxylic acid of anthraquinone molecules and carboxylic acid functionalized MWCNTs to the amine group of NAD established. The CNT/AQ-NAD/ADH electrode was applied for amperommetric sensing of ethanol in the linear concentration range from 3.34 up to 22.8 µM at optimum conditions and specifically, the attached ADH on NAD-AQ/CNT/GC electrode showed quasi-reversible cyclic voltammogram with the formal potential of -0.562 and -0.488V. The CNT/AQ-NAD electrode represents a general approach to the development of dehydrogenases-based electrochemical biosensors.

کلیدواژه‌ها [English]

  • Biosensor
  • Alcohol dehydrogenase
  • Nicotinamide adenine dinucleotide
  • Anthraquinone 2-carboxylic acid
  • Multiwalled carbon nanotubes
[1]Purvesh Sonia, Mohit Raghuwanshia, Roland Wuerzb, Birger Berghoffc, Joachim Knochc, O.C.-M. Dierk Raabed,“ Role of elemental intermixing at the In2S3/CIGSe heterojunction deposited using reactive RF magnetron sputteringˮ, Solar Energy Materials and Solar Cells, 195, 367-375,2019.
[2]K.D. Yayun Zhu, Haoxuan Sun, Bangkai Gu, Hao Lu, Fengren Cao, Jie Xiong, and Liang Li, “TiO2Phase Junction Electron Transport Layer Boosts Efficiency of Planar Perovskite Solar Cellsˮ, Adv. Sci. ,5,170-179, 2018.
[3]Y.G. Liangbin Xiong, Jian Wen, Hongri Liu, Guang Yang, Pingli Qin, and Guojia Fang, “Review on the Application of SnO2in Perovskite Solar Cellsˮ, Adv. Funct. Mater., 27-57 , 2018.
[4]J.O. Wendy J Nimens, Anna Caruso, Mackenzie Jonely, Charles Simon,, R.N. Detlef-M. Smilgies, Michael A. Scarpulla, and Luisa Whittaker-Brooks, “Morphology and optoelectronic variations underlying the nature of the electron transport layer in perovskitesolar cellsˮ, ACS Appl. Energy Mater.,178,65-74,2018.
[5]R.A.YanpengFu,TristanKöhler,MartinKrüger,AlexanderSteigert, IverLauermann,MarthaCh.Lux-Steiner,Christian-HerbertFischer , “Spray-ILGAR ZnSn anodots /In2S3as defect passivation /pointcontact bilayer buffer for Cu(In,Ga)(S,Se)2solar cells”, Solar Energy Materials & Solar Cells, 117,293-299,2013.
[6]N.N.Hubert,A.Etcheberry,O.Roussel,D.Hariskos,M.Powalla, O. Kerrec,D.Lincot, “A better understanding of the growth mechanism of Zn(S, O,OH) chemical bath deposited buffer layers for high efficiency Cu(In,Ga)(S,Se) (2)solar cells”, Applications and Materials Science, 205, 2335-2339,2008.
[7]B.F.D.Hariskos,R.Menner,N.Naghavi,C.Hubert,D.Lincot,M.Powalla, “The Zn(S,O,OH)/ZnMgO buffer in thin-film Cu(In,Ga)(Se,S)2-based solar cells PartII : magnetron sputtering of the ZnMgO buffer layer for in-line co-evaporated Cu(In,Ga)Se2solar cellsˮ, Progress in Photovoltaics : Research and Applications, 17, 479-488,2009.
[8]J.Y. Zongyan Zhao, Dacheng Zhou, “Density functional theory study the effects of point defects in b-In2S3ˮ, Materials Science ,73 ,139-145 , 2013.
[9]P.P. Revathi N, Ramakrishna Reddy KT., “Synthesis and physical behaviour of In2S3filmsˮ, Applied Surface Science, 254, 5291-8, 2008.
[10]N. Barreaua, C. Deudonb, A. Lafondb, S. Galla, J. Kesslera, “A study of bulk NaxCu1-xIn5S8andits impact on the Cu(In,Ga)Se2/In2S3interface of solar cellsˮ, Solar Energy Materials & Solar Cells, 90, 1840-1848,2006.
[11]G.S. David, P. McMeekin, W. Rehman, G.E. Eperon, M.Saliba, M.T. Hörantner, A.Haghighirad, N.Sakai, L. Korte, B. Rech, M. B. Johnston, L.M. Herz, H.J. Snaith, “A mixed-cation lead mixed-halide perovskite absorber for tandem solar cellsˮ, science,5,110-118,2016.
[12]Q.Z. Jiang, L.Wang, H.Yang, X.Meng, J. Liu, H.Yin, Z.Wu, J.Zhang, X.You, Jingbi, “Enhanced electron extraction using SnO2for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cellsˮ, NATURE, 2, 16177 ,2017.
[13]S. Eun. J. Yeom, W. S. Yang, S. J. Lee, W. Yin, D. Kim, J.H. Noh, T. K. Ahn and S. Seok, “Controllable synthesis of single crystalline Sn-based oxides and their application in perovskite solar cellsˮ, J. Mater. Chem. A, 5,79-86, 2017.
[14]M.J. Qin M, Ke W, Qin P, Lei H, Tao H, Zheng X, Xiong L, Liu Q, Chen Z, Lu J, Yang G, Fang G, “Perovskite Solar Cells Based on Low-Temperature Processed Indium Oxide Electron Selective Layersˮ, ACS Appl Mater Interfaces, 13, 8460-6 2016.
[15]Z.M.A.-G. M.A. Ahmed, H.A.A. Medien, M.A. Hamza, “Effect of porphyrin on photocatalytic activity of TiO2nanoparticles toward Rhodamine B photodegradationˮ,Photochemistry&Photobiology, B: Biology,122, 2017.
[16]H.A. Himanshu Narayan, “A Comparison of Photocatalytic Activity of TiO2Nanocomposites Doped with Zn2+/Fe3+and Y3+Ionsˮ, Int. J. Nanosci. Nanotechnol., 13, 315-325,2017.
[17]D.D. R. Verma, A. Chirila, D. Gettler, J. Perrenoud, F. Pianezzi, U. Meller, S. Kumar, A. N. Tiwari, J, “The study of surface photoconductive response in indium sulfide crystalsˮ, Appl. Phys., 108, 2010.
[18]A.Timoumi, N. Bouguila, M. Chaari, M. Kraini,A. Matoussi, H. Bouzouita, “Electrical and dielectric properties of In2S3synthesized by solid state reactionˮ, Journal of Alloys and Compounds,129,2016.
[19]D.S. Hariskos, S.; Powalla, M., “Buffer Layers in Cu(In,Ga)Se2Solar Cells and Modulesˮ, Thin Solid Films,480, 99-109,2005.
[20]N.S.M. S. Marsillac , V. Gade , S.V. Khare “Structural and electronic properties of β-In2X3(X=O, S, Se, Te) using ab initio calculationsˮ, Thin Solid Films ,519, 5679–5683, 2011.
[21]J.K.R.SáezAraoz,S.Harndt,T.Koehler,M.Krueger,P.Pistor,A.Jasenek,F.Hergert,M.C.LuxSteiner,C.-H.Fischer, “ILGARIn2S3buffer layers for Cd-free Cu(In,Ga)(S,Se)2solar cells with certified efficiencies above 16%ˮ, Prog.Photovolt.Res.Appl, 20, 855-861,2012.
[22]J.W. Zhe Xu, Yuqian Yang, Zhang Lan, Jianming Lin, “High Efficiency Planar Hybrid Perovskite Solar Cells Using Indium Sulfide as Electron Transport Layer”, ACS Appl. Energy Mater., 367-379,2018.
[23]B. Raj Mohameda, L. Amalraj,“ Effect of precursor concentration on physical properties of nebulizedspray deposited In2S3thin filmsˮ, Journal of Asian Ceramic Societies, 4 , 357-366,2016.
[24]M.M. Angel Susan Cherian, C. Sudha Kartha, K.P. Vijayakumar, “Role of chlorine on the opto-electronic properties of β-In2S3thin filmsˮ, Thin Solid Films 518 , 1779-1783,2010.
[25]A.N. Thierno Sall, B.M. Soucase, M. Mollar, B.Hartitti, M.Fahoume ,“Synthesis of In2S3thin films by spray pyrolysis from precursors with different [S]/[In] ratiosˮ, J. Semicond ,35, 2014.
[26]T.T. John, K.P. Vijayakumar, Y.K. T. Abe, “Preparation of indium sulfide thin films by spray pyrolysis using a new precursor indium nitrate”, Applied Surface Science, 2, 1360-1367,2005.
[27]S.B.X. Ya-QiongWang, J.G. Deng, L.-Z. Gao, “Enhancing the efficiency of planar heterojunction perovskite solar cells via interfacial engineering with 3-aminopropyl trimethoxy silane hydrolysateˮ, Soc. open sci., 4 , 117980 , 2017.
[28]A.T.-S. M. Calixto-Rodrigueza, A. Ortizc, A. Sanchez-Juareza, “Optoelectronical properties of indium sulfide thin films prepared by spray pyrolysis for photovoltaic applications”, Thin Solid Films, 480, 133-137,2005.
[29]F. Liu, J.Yanga, M. Hao, Z. Tong, L.Jiang, Z. Wu,“ MoS2nanodots decorated In2S3nanoplates: a novel heterojunction with enhanced photoelectrochemical performance”, Chem. Commun., 10, 1-3,2015.
[30]M.R. T. Asikainen, M. Leskelti,“ Growth of In,S, thin films by atomic layer epitaxyˮ, Applied Surface Science, 122-125,1904.
[31]M.S.W. Robert, F. McCarthy, J. D. Emery, A.S. Hock, A.B.F. Martinson, “Oxygen-Free Atomic Layer Deposition of Indium Sulfide”, ACS Appl.Mater. Interfaces ,6 ,12137−12145, 2014.
[32] X.T.Y.W.Y.S.J.H.B.C.J.L.Z.Y. Ming Li1, Y. Zhang,“ Highly Enhanced Visible-Light-Driven Photoelectrochemical Performance of ZnO-Modified In2S3Nanosheet Arrays by Atomic Layer Depositionˮ, Nano-Micro Lett.,151, 2018.
[33]N.H. Naghavi, R.; Laptev, V.; Lincot, D. , “Growth Studies and Characterisation of In2S3Thin Films Deposited by Atomic Layer Deposition (ALD)ˮ,Appl. Surf. Sci. ,222, 65-73,2004.
[34]L.X. L. Wang, Y. Wu, Y. Tian,“ Zr-doped b-In2S3ultrathin nanoflakes as photoanodes: enhancedvisible-light-driven photoelectrochemical water splitting”, ACS Sustain. Chem. Eng., 4, 2606–2614, 2016.
[35]J.L. Lee, J. Ahn, B. Kim, “Structural and Optical Properties of β-In2S3and β-In2S3:CO2+Films Prepared on Indium-Tin-Oxide Substratesˮ, J. Korean Phys. Soc., 53, 3255−3261,2008.