محاسبات اصول اولیه ساختار الکترونی نانوساختارهای دو بعدی جدید: مطالعه ی DFT، تابعی GGA-PBE و تابعی هیبریدی HSE06

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه فیزیک، دانشکده علوم پایه، دانشگاه شهید مدنی آذربایجان، تبریز، ایران

2 گروه شیمی، دانشکده علوم پایه، دانشگاه شهید مدنی آذربایجان، تبریز، ایران

چکیده

در این مطالعه، با محاسبه­ی ویژگی ساختاری، الکترونی، نوری و فتوکاتالیستی تک­لایه­های مکسین، یک خانواده از مواد دو بعدی با کاربردهای گسترده­ی آن­ها به دلیل ویژگی برجسته­شان، از جمله Hf2CO2 و Zr2CO2 ، این تک­لایه­ها را با استفاده از تابعی­های GGA-PBE و HSE06 مورد مقایسه قرار می­دهیم. این محاسبات با استفاده از نظریه­ی تابعی چگالی (DFT) انجام شده است. سلول واحد این ساختارها و موقعیت اتمی آن­ها کامل بهینه شده است. نتایج نشان می­دهد که ثابت­های شبکه برای نانوساختارهای دو بعدی Hf2CO2 و Zr2CO2 به ترتیب 3/3592 و 3/3771 آنگستروم است. گاف نواری این نانوساختارها از نوع غیرمستقیم است. بر اساس اطلاعات بدست آمده مقدار گاف نواری آن­ها با تابعی GGA-PBE به ترتیب 0/92 و0/89 الکترون­ولت است. همچنین با تابعی هیبریدی HSE06، گاف نواری بدست آمده به ترتیب 1/75 و 1/72 الکترون­ولت است. مشاهده می­شود که با تابعی هیبریدی HSE06، میزان گاف نواری بهبود می یابد. بخش­های حقیقی و موهومی تابع دی­الکتریک به منظور بررسی ویژگی نوری این ساختارها محاسبه شده است. محاسبات نشان می­دهند که مواد مورد مطالعه در مناطق مرئی و فرابنفش از جذب بالایی برخوردار هستند. نتایج بدست آمده نشان می­دهد که این نانوساختارهای دو بعدی می­توانند به عنوان فتوکاتالیست مناسب در فرایند شکافت آب مورد استفاده قرار گیرند.

کلیدواژه‌ها


عنوان مقاله [English]

First-principles calculations of Electronic Structure of Novel 2D Nanostructures: a DFT, GGA-PBE functional and hybrid functional HSE06 study

نویسندگان [English]

  • Sima Rastegar 1
  • Alireza Rastkar Ebrahimzadeh 1
  • Jaber Jahanbin Sardroodi, 2
1 Department of Physics, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
2 Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
چکیده [English]

In this paper, the structural, electronic, optical, and photocatalytic properties of MXene monolayers are studied. MXenes are a new class of two-dimensional (2D) transition metal carbides and nitrides with the chemical formula Mn+1Xn (M = Sc, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta; X = C, N; n = 1–3) that etching MAX phases have recently synthesized. We study Hf2CO2 and Zr2CO2 nanostructures, comparing them with the GGA-PBE and HSE06 functionals. These calculations were performed using density functional theory (DFT). The unit cell of these structures and their atomic positions are fully optimized. The results show that the lattice constants for two-dimensional nanostructures Hf2CO2 and Zr2CO2 are 3.3592 and 3.3771 angstroms, respectively. The band gap of these nanostructures is of the indirect type. Based on the information obtained, their band gap values with GGA-PBE functional are 0.92 and 0.89 eV, respectively. The results of calculations with HSE06 hybrid functional show that both Hf2CO2 and Zr2CO2 nanostructures are semiconductors with band gaps of 1.75 and 1.72 eV. It can be seen that with an HSE06 hybrid functional, the amount of band gap improves. The real and imaginary parts of the dielectric function have been calculated to investigate the optical properties of these structures. In addition, the studied materials have high absorption in visible and ultraviolet regions. The obtained results show that these nanostructures may apply in designing optoelectronic devices.

کلیدواژه‌ها [English]

  • Structural Properties
  • Electronic Properties
  • Optical Properties
  • Photocatalyst
  • Density Functional Theory (DFT)
  • Two-Dimensional Nanostructures
[1] R. Boudries, A. Khellaf, A. Aliane, L. Ihaddaden, F. Khida, “PV system design for powering an industrial unit for hydrogen production”, International journal of hydrogen energy, 39(27), 15188-95, 2014.
[2] M.B. Tahir, T. Nawaz, G. Nabi, M. Sagir, M. Rafique, A. Ahmed, et al, “Photocatalytic degradation and hydrogen evolution using bismuth tungstate based nanocomposites under visible light irradiation”, Int J Hydrogen Energy, 45, 22833-47, 2020.
[3] X. Gao, C. Liang, K. Gao, X. Li, J. Liu, Q. Li, “Z-scheme heterojunction Ag3PO4/BiVO4 with exposing high-active facets and stretching spatial charge separation ability for
photocatalytic organic pollutants degration”, Appl Surf Sci, 524, 146506-16, 2020.
[4] A. Belhadi, L. Boudjellal, S. Boumaza, M. Trari, “Hydrogen production over the hetero-junction MnO2/SiO2”, Int J Hydrogen Energy, 43, 3418-23, 2018.
[5] A.L. Salvia, W.L. Filho, L.L. Brandli, J.S. Griebeler, “Assessing research trends related to Sustainable Development Goals: local and global issues”, J Clean Prod, 208, 841-9, 2019.
[6] Z. Guo, J. Zhou, L. Zhu, Z. Sun, “Mxene: a promising photocatalyst for water splitting”, Journal of Materials Chemistry A, 4(29), 11446-11452, 2016.
[7] C.F. Fu, X. Li, Q. Luo, and J. Yang, “Two-dimensional multilayer M2CO2 (M= Sc, Zr, Hf) as photocatalysts for hydrogen production from water splitting: a first principles study”, Journal of Materials Chemistry A, 5(47), 24972-24980, 2017.
[8] C. Soldano, A. Mahmood, and E. Dujardin, “Production, properties and potential of graphene”, Carbon, 48, 2127–2150, 2010.
[9] P.D. Kaushik, M. Rodner, G. Lakshmi, I.G. Ivanov, G. Greczynski, J. Palisaitis, J. Eriksson, P. Solanki, A. Aziz, A.M. Siddiqui, et al., “Surface functionalization of epitaxial graphene using ion implantation for sensing and optical applications”, Carbon, 157, 169–184, 2020.
[10] F. Ostovari, M. Hasanpoori, M. Abbasnejad, and M. A. Salehi, “Dft calculations of graphene monolayer in presence of fe dopant and vacancy”, Physica B: Condensed Matter, 541, 6–13, 2018.
[11] Y. Zhang, L. Wang, N. Zhang, and Z. Zhou, “Adsorptive environmental applications of mxene nanomaterials: a review”, RSC advances, 8, 19895–19905, 2018.
[12] Z. Wei, Z. Peigen, T. Wubian, Q. Xia, Z. Yamei, and S. ZhengMing, “Alkali treated ti3c2tx mxenes and their dye adsorption performance”, Materials Chemistry and Physics, 206, 270–276, 2018.
[13] J. Pang, R.G. Mendes, A. Bachmatiuk, L. Zhao, H.Q. Ta, T. Gemming, H. Liu, Z. Liu, and M.H. Rummeli, “Applications of 2d mxenes in energy conversion and storage systems”, Chemical Society reviews, 48, 72–133, 2019.
[14] H. Kim, Z. Wang, and H.N. Alshareef, “Mxetronics: Electronic and photonic applications of mxenes”, Nano Energy, 60, 179–197, 2019.
[15] S. Rastegar, A. Rastkar Ebrahimzadeh, J. Jahanbin Sardroodi, “Mxene-based nanostructures for water splitting process using the density functional theory”, Journal of Nanoanalysis, 2021.
[16] A. Mostafaei, E. Faizabadi, and E.H. Semiromi, “Electronic structures and optical properties of two-dimensional (w2/3x1/3)2co2 (x=sc,y) imxene by first-principles calculations”, Materials Chemistry and Physics, 248, 122896, 2020.
[17] R. Khaledialidusti, A.K. Mishra, and A. Barnoush, “Atomic defects in monolayer ordered double transition metal carbide (mo2tic2tx) mxene and co2 adsorption”, Journal of Materials Chemistry C, 8, 4771–4779, 2020.
[18] A. Mostafaei, E. Faizabadi, and E. H. Semiromi, Nanotechnology, 32(1), 015703, 2020.
[19] A. Mostafaei, E. Faizabadi, and E.H. Semiromi, “Tuning the electronic and optical properties of sc2cf2 mxene monolayer using biaxial strain”, energy conversion, 25, 26, 2020.
[20] M. Naguib, V.N. Mochalin, M.W. Barsoum, and Y. Gogotsi, “25th anniversary article: Mxenes: a new family of two-dimensional materials”, Advanced Materials, 26, 992–1005, 2014.
[21] S. Sarikurt, D. Çakır, M. Keçeli, and C. Sevik, “The influence of surface functionalization on thermal transport and thermoelectric properties of mxene monolayers”, Nanoscale, 10, 8859–8868, 2018.
[22] D. Horlait, S.C. Middleburgh, A. Chroneos, and W.E. Lee, “Synthesis and dft investigation of new bismuth-containing max phases”, Scientific reports, 6, 18829, 2016.
[23] M. Khazaei, A. Ranjbar, K. Esfarjani, D. Bogdanovski, R. Dronskowski, and S. Yunoki, “Insights into exfoliation possibility of max phases to mxenes”, Physical Chemistry Chemical Physics, 20, 8579–8592, 2018.
[24] X. Zhang and Y. Xie, “Recent advances in free-standing two-dimensional crystals with atomic thickness: design, assembly and transfer strategies”, Chemical Society Reviews, 42, 8187–8199, 2013.
[25] X. Wang, S. Kajiyama, H. Iinuma, E. Hosono, S. Oro, I. Moriguchi, M. Okubo, and A. Yamada, “Pseudocapacitance of mxene nanosheets for high-power sodium-ion hybrid capacitors”, Nature communications, 6, 1–6, 2015.
[26] X. Xie, M.Q. Zhao, B. Anasori, K. Maleski, C.E. Ren, J. Li, B.W. Byles, E. Pomerantseva, G. Wang, and Y. Gogotsi, “Porous heterostructured mxene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices”, Nano Energy, 26, 513–523, 2016.
[27] Y. Xie, M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, X. Yu, K.W. Nam, X.Q. Yang, A.I. Kolesnikov, and P.R. Kent, “Role of surface structure on li-ion energy storage capacity of two-dimensional transitionmetal carbides”, Journal of the American Chemical Society, 136, 6385–6394, 2014.
[28] J. Yan, C.E. Ren, K. Maleski, C.B. Hatter, B. Anasori, P. Urbankowski, A. Sarycheva, and Y. Gogotsi, “Flexible mxene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance”, Advanced Functional Materials, 27, 1701264, 2017.
[29] Y. Cheng, Y. Zhang, Y. Li, J. Dai, and Y. Song, “Hierarchical ni2p/cr2ctx (mxene) composites with oxidized surface groups as efficient bifunctional electrocatalysts for overall water splitting”, Journal of Materials Chemistry A, 7, 9324–9334, 2019.
[30] Q. Zhang, J. Teng, G. Zou, Q. Peng, Q. Du, T. Jiao, and J. Xiang, “Efficient phosphate sequestration for water purification by unique sandwich-like mxene/magnetic iron oxide nanocomposites”, Nanoscale, 8, 7085–7093, 2016.
[31] F. Wang, C. Yang, M. Duan, Y. Tang, and J. Zhu, “Tio2 nanoparticle modified organ-like ti3c2 mxene nanocomposite encapsulating hemoglobin for a mediator-free biosensor with excellent performances”, Biosensors and Bioelectronics, 74, 1022–1028, 2015.
[32] X.f. Yu, Y.c. Li, J.b. Cheng, Z.b. Liu, Q.z. Li, W.z. Li, X. Yang, and B. Xiao, “Monolayer ti2co2: a promising candidate for nh3 sensor or capturer with high sensitivity and selectivity”, ACS applied materials & interfaces, 7, 13707–13713, 2015.
[33] K. Huang, et al., “Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications”, Chem. Soc. Rev, 47 (14), 5109–5124, 2018.
[34] Y. Aierken, et al., “MXenes/graphene heterostructures for Li battery applications: a first principles study”, J. Mater. Chem, 6 (5), 2337–2345, 2018.
[35] H. Lashgari, et al., “Electronic and optical properties of 2D graphene-like compounds titanium carbides and nitrides: DFT calculations”, Solid State Commun, 195, 61–69, 2014.
[36] Y. Liang, M. Khazaei, A. Ranjbar, M. Arai, S. Yunoki, Y. Kawazoe, H. Weng, Z. Fang, “Theoretical prediction of two-dimensional functionalized MXene nitrides as topological insulators”, Phys. Rev. B Condens. Matter, 96, 195414, 2017.
[37] H. Zhang, et al., “2D a-Fe2O3 doped Ti3C2 MXene composite with enhanced visible light photocatalytic activity for degradation of Rhodamine B”, Ceram. Int, 44 (16), 19958–19962, 2018.
[38] M. Khazaei, A. Ranjbar, M. Arai, T. Sasaki, S. Yunoki, “Electronic properties and applications of MXenes: a theoretical review”, J. Mater. Chem. C, 5 (10), 2488–2503, 2017.
[39] H. Weng, A. Ranjbar, Y. Liang, Z. Song, M. Khazaei, S. Yunoki, M. Arai, Y. Kawazoe, Z. Fang, X. Dai, “Large-gap twodimensional topological insulator in oxygen functionalized MXene”, Phys. Rev. B, 92 (7), 075436, 2015.
[40] N. Zhang, et al., “Superior structural, elastic and electronic properties of 2D titanium nitride MXenes over carbide MXenes: a comprehensive first principles study”, 2D Mater, 5 (4), 045004, 2018.
[41] S. Wang, J.X. Li, Y.L. Du, C. Cui, “First-Principles study on structural, electronic and elastic properties of graphene-like hexagonal Ti2C monolayer”, Comput. Mater. Sci, 83, 290293, 2014.
[42] J.C. Lei, X. Zhang, and Z. Zhou, “Recent advances in mxene: Preparation, properties, and applications”, Frontiers of Physics, 10, 276–286, 2015.
[43] J. Jalilian, et al., “Tuning of the electronic and optical properties of single-layer indium nitride by strain and stress, Phys. E Low-dimens”, Syst. Nanostruct, 83, 372–377, 2016.
[44] Sh. Tamleh, Gh. Rezaei, J. Jalilian, “Stress and strain effects on the electronic structure and optical properties of ScN monolayer”, Phys. Lett, 382 (5), 339–345, 2018.
[45] W. Yiou, S. Hajime, X. Jijia, T. Osamu, M.D. James, H. Masanobu, K. Dan, A. Ryu, T. Junwang, Chem. Rev, 118, 5201–5241, 2018.
[46] W. Kohn, L.J. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects”, Physical Review, 140, A1133-A1138, 1965.
[47] J.P. Perdew, Y. Wang, Phys. Rev. B, 45, 13244, 1992.
[48] J.P. Perdew, K. Burke, Y. Wang, Phys. Rev. B, 54, 16533, 1996.
[49] J. Heyd, G.E. Scuseria, M. Ernzerhof, J. Chem. Phys, 118, 8207, 2003.
[50] G. Kresse, J. Furthmuller, Phys. Rev. B: Condens. Matter Mater. Phys. 54, 11169-11186, 1996.
[51] G. Kresse, J. Furthmuller, Comput. Mater. Sci, 6, 15-50, 1996.
[52] H.J. Monkhorst, J.D. Pack, Phys. Rev. B, 13, 5188, 1976.
[53] K. Momma, F. Izumi, J. Appl. Crystallogr, 44, 1272, 2011.
[54] M. Khazaei, M. Arai, T. Sasaki, C.Y. Chung, N.S. Venkataramanan, M. Estili, Y. Sakka, Y. Kawazoe, Adv. Funct. Mater, 23, 2185-2192, 2013.
[55] L. Li, J. Phys. Chem. C, 120, 24857-24865, 2016.
[56] B.H. Lee, S. Park, M. Kim, A.K. Sinha, S.C. Lee, E. Jung, W.J. Chang, K.S. Lee, J.H. Kim, S.P. Cho, H. Kim, “Reversible and cooperative photoactivation of single-atom Cu/TiO2 photocatalysts”, Nature materials, 18(6), 620-6, 2019.
[57] R. Abt, C. Ambrosch-Draxl, and P. Knoll, “Optical response of high temperature superconductors by full potential lapw band structure calculations”, Physica B: Condensed Matter, 194, 1451–1452, 1994.
[58] D. Ter Haar, “The Collected Papers of H. A. Kramers”, Nature, 178(4529), 337-8, 1956.
[59] S. Saha, T. P. Sinha, and A. Mookerjee, Physical Review B, 62, 8828, 2000.
[60] X.H. Zha, Q. Huang, J. He, H. He, J. Zhai, J.S. Francisco, S. Du, “The thermal and electrical properties of the promising semiconductor MXene Hf2CO2”, Scientific reports, 6, 27971, 2016.
[61] Z.W. Seh, K.D. Fredrickson, B. Anasori, J. Kibsgaard, A.L. Strickler, M.R. Lukatskaya, A. Vojvodic, “Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution”, ACS Energy Letters, 1(3), 589-594, 2016.