فیلتر خط اتمی کوک پذیر مبتنی بر جفت شدگی قوی اتم-پلاسمون

نوع مقاله : مقاله پژوهشی

نویسندگان

1 آزمایشگاه مگنتوپلاسمونیک، پژوهشکده لیزر و پلاسما، دانشگاه شهید بهشتی، تهران

2 گروه فیزیک، دانشکده علوم پایه، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران

چکیده

محدود کردن نور در ابعاد نانو در ساختارهای اتمی-پلاسمونی، می‌تواند کاربردهای بسیاری از جمله ساخت فیلترهای خط اتمی داشته باشد. در چنین سامانه‌های تشدیدی جفت‌شده‌ای، تشدید پهن پلاسمونی در مقابل تشدید باریک اتمی قرار می‌گیرد که منجر به شکل‌گیری یک فیلتر باریک در طیف بازتاب می‌گردد. در این مقاله با طراحی و ساخت سلول اتمی-پلاسمونی، طیف بازتاب از یک لایه نازک طلا که در مجاورت بخار روبیدیم در هندسه کرشمن قرار گرفته است، با استفاده از روش مدولاسیون فرکانسی اندازه‌گیری شد. با تنظیم زاویه نور فرودی، فرکانس تشدید مد پلاسمون-پلاریتون نسبت به فرکانس مرکزی خطوط جذب اتمی تغییر کرده و پدیده تبدیل تشدید فانو به شبه EIT و سپس، بازگشت به شکل خط فانو مشاهده شد. بنابراین، پدیده شبه EIT مشاهده شده به عنوان یک فیلتر خط اتمی کنترل پذیر با زاویه فرود نور معرفی شد.

کلیدواژه‌ها


عنوان مقاله [English]

Tunable atomic filter based on atom-plasmon coupling

نویسندگان [English]

  • Seyedeh Mehri Hamidi 1
  • Mohammad Mosleh 1
  • Maliheh ranjbaran 2
  • mahnaz Salmanpour 1
1 Shahid Beheshti university
2 Islamic Azad university
چکیده [English]

Confinement of light at nanoscale dimensions in atomic plasmonic structures has many applications such as atomic line filters. In such coupled resonant systems, broad plasmonic resonance in contrast to narrow atomic resonance gives rise to reflection atomic spectroscopy with high resolution and very fine filter audiences. In this paper, an atomic-plasmonic cell was modeled and fabricated and the reflection from a thin gold layer in the vicinity of the rubidium vapor in Kretschmann configuration was measured by frequency modulation setup. By tuning the angle of incidence of light we could change the frequency of resonance of surface plasmon-polariton mode from the central frequency of atomic resonance lines, so the EIT to Fano resonance phenomena and vice versa have been observed. So, the EIT-like phenomena was introduced as an atomic line filter, controllable with light entrance angle.

کلیدواژه‌ها [English]

  • Atomic-plasmonic resonant interaction
  • Rubidium atom
  • Tunable filter
  • Fano resonance
  1. F. Cutler, W.J. Hamlyn, J. Renger, K.A. Whittaker, D. Pizzey, I.G. Hughes, V. Sandoghdar, and C.S. Adams, Nanostructured alkali-metal vapor cells. Physical Review Applied,. 14, 034054-034059, 2020.
  2. J. Liang, G. Gao, B. Wang, X. Guan, Background noise resistant underwater wireless optical communication using Faraday atomic line laser and filter. Journal of Lightwave Technology, 45, 3118447-3118452, 2021.
  3. C . Fricke-Begemann , M. Alpers, and J. Höffner, Daylight rejection with a new receiver for potassium resonance temperature lidars. Optics letters, 27, 1932-1934, 2002.
  4. L .Yin, B .Luo, A. Dang, H. Guo. An atomic optical filter working at 1.5 μm based on internal frequency stabilized laser pumping. Optics express, 22, 7416-7421, 2014.
  5. A. Zielińska,F.A. Beduini, V.G. Lucivero and M.W. Mitchell. Atomic filtering for hybrid continuous-variable/discrete-variable quantum optics, optics express22, 21, 25307-25317, 2014.
  6. Liu, Y. Zhang, H. Wu and P. Yuan. Ultra-narrow bandwidth atomic filter based on optical-pumping-induced dichroism realized by selectively saturated absorption. Optics Comm, 285, 2012.
  7. Kiefer, R. Löw, J. Wrachtrup and I. Gerhardt. Na-Faraday rotation filtering: The optimal point. Sci Rep 4, 6552-6558, 2014.
  8. Yien, B. Luo, J. Xiong, H. Guo, “Tunable excited state voigt atomic optical filter.” Opt. exp. 24(16), 6088-6093, 2016.
  9. Odeurs, RN. Shakhmuratov. “Optical filter with electromagnetically induced transparency”. European Quantum Electronics Conference, IEEE, 12, 90, 2005.
  10. A. Gelbwachs, “Atomic resonance filters.” IEEE journal of quantum electronics, 24, 1266-1277, 1988.
  11. -Xing Luo, H.-Ran Li, X. Wang, "Distributed atomic quantum information processing via optical fibers", Scientific Reportsvolume 7, 1234, 2017.
  12. Liu, E. Zhao, D.Liu, H.Li & W.Sun. A tunable atomic line filter without sacrificing transmission based on the combination of selective pump and magnetic field. Optik, 148, 244-250, 2017.
  13. Z . Zhang, G.I. Ng, T . Hu, H . Qiu, X . Guo, W . Wang, M . S Rouifed, C . Liu & H . Wang. Conversion between EIT and Fano spectra in a microring-Bragg grating coupled-resonator system. Applied Physics Letters, 8, 081105, 2017.
  14. Jeong, IH. Bae, HS. Moon. “Noise filtering via electromagnetically induced transparency”. Optics Communications. 15; 383:31-5, 2017.
  15. Wang, YS. Wang, EK. Huang, W. Hung, KL. Chao, PY. Wu, YH. Chen, IA.Yu, “Ultranarrow-bandwidth filter based on a thermal EIT medium”, Scientific Reports. 21; 8(1):1-7, 2018.
  16. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100, 233602-233606, 2008.
  17. S. Tojo, Y. Murkami, M. Hasuo, and T.Fujmoto, “Attenuated Total Reflection of the Rubidium D2 Line in Optically Dense Vapor,” J. Phys. Soc. Jpn, 1069-1072, 2002.
  18. A. Aljunid, E. A. Chan, G. Adamo, M. Ducloy, D. Wilkowski, and N. I. Zheludev, "Atomic Response in the Near-Field of Nanostructured Plasmonic Metamaterial," Nano Lett. 16, 3137–3141, 2016.
  19. A. Chan, G. Adamo, S. A. Aljunid, M. Ducloy, N. I. Zheludev and D. Wilkowski, "Plasmono-Atomic Interactions on a Fiber Tip," Appl. Phys. Lett 116, 183101-183105, 2020.
  20. Thomas, C. Kupchak, G. S. Agarwa, and A. I. Lvovsky, "Observation of electromagnetically induced transparency in evanescent fields," Opt.Express 21, 6880 – 6888, 2013.
  21. Stehle, C. Zimmermann, S. Slama, "Cooperative coupling of ultracold atoms and surface plasmons," Nature Physics 10, 937–942, 2014.
  22. Sohrabi, S. M. Hamidi, “Fabrication methods of plasmonic and magnetoplasmonic crystals: a review”,the european physics journal plus. 132, 1-22, 2017.
  23. M. Stern, M. Grajower, and U. Levy, Fano resonances and all-optical switching in a resonantly coupled plasmonic–atomic system. Nature communications,. 5, 1-9, 2014.
  24. Zektzer, Enhanced light–matter interactions in plasmonic–molecular gas hybrid system. Optica, 5(4): 486-494, 2018.

 

  1. Mosleh, M. Ranjbaran, S. M. Hamidi, Nanoscale Atom-Plasmon interaction at Gold-Alkali vapor interface, Nanoscale, 7, 1-8, 2021.
  2. Demtröder, Laser spectroscopy: basic concepts and instrumentation. 2013: Springer Science & Business Media.