استفاده از نانوذرات نقره پوشش داده شده با تریس-دی تیوکاربامات به عنوان حس گر رنگ سنجی گزینش پذیر برای تشخیص ملامین در شیر

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه شیمی، پژوهشکده شیمی و پتروشیمی، پژوهشگاه استاندارد، کرج

2 گروه شیمی، دانشکده علوم پایه، دانشگاه پیام نور، مرکز تهران شرق، تهران

چکیده

هدف از این پژوهش، توسعه روشی ارزان، گزینشی، حساس و کاربردی برای تشخیص ملامین در شیر است. از واکنش 2-آمینو-2-هیدروکسی-پروپان- 1، 3- دی‌‌اُل (باز تریس) به­عنوان باز ارزان و در دسترس، با کربن دی­سولفید، تریس-دی­تیوکاربامات تهیه می­شود که به­دلیل وجود گروه­ عاملی دی­تیوکاربامات همراه با گروه­های عاملی هیدروکسیل، تمایل زیادی به برهم­کنش با ملامین، دارد. برهم­کنش الکترون­دهنده-الکترون­پذیرنده بین ملامین و تریس-دی­تیوکاربامات در سطح نانوذرات نقره، منجربه انباشتگی نانوذرات نقره شده که این پدیده باعث جابجایی طول موج جذبی نانوذرات به طول موج­های بالاتر و تغییر رنگ محلول از زرد روشن به قرمز می­شود. این تغییر رنگ با استفاده از طیف­سنجی فرابنفش-مرئی (UV-Vis) ثبت و اندازه­گیری شده است. از این روش می­توان برای اندازه­گیری سریع مقدار ملامین در نمونه­های شیر پاستوریزه استفاده کرد. حد تشخیص روش µM 7/0 است و حس­گر نسبت به ملامین کامل گزینش­پذیر عمل می­کند. محدوده خطی بودن اندازه­گیری روش ارائه­شده بین µM 2 تا µM 12 است که با بسیاری از روش­های گزارش شده مشابه، قابل رقابت است.  

کلیدواژه‌ها


عنوان مقاله [English]

Tris-dithiocarbamate Functionalized Silver Nanoparticles as a Selective Colorimetric Sensor for Detection of Melamine in Milk

نویسندگان [English]

  • Fezeh Arianasab 1
  • Shahla Mozafari 2
  • Zholit Ardokhanian 2
  • Sahar Rabiei 2
چکیده [English]

The aim of this study was to develop a cheap, selective, sensitive and practical method for detecting melamine in raw milk samples. Tris-dithiocarbamate was prepared by the reaction of 2-amino-2-hydroxy-propane-1,3-diol (tris base), as a cheap and available base, with carbon disulfide. Due to the presence of the dithiocarbamate together with the hydroxyl functional groups, there is a strong tendency to interact with melamine. Electron donor-electron acceptor interaction between melamine and tris-dithiocarbamate on the surface of silver nanoparticles leads to the aggregation of silver nanoparticles, which causes the absorption wavelength of nanoparticles to shift to higher wavelengths and the color of the solution changes from bright yellow to red. This color change has been recorded and measured using ultraviolet-visible (UV-Vis) spectroscopy. This method can be used to quickly measure the small amount of melamine in pasteurized milk samples. The detection limit of the method is 0.7 µM, and the sensor is completely selective towards melamine. The linear range of the method is 2 µM -12 µM, which is competitive with many similar methods reported.

کلیدواژه‌ها [English]

  • Silver nanoparticles
  • Dithiocarbamate Ligand
  • Colorimetric Detection
  • Selective Sensor
  • Melamine in Milk
[1]        European Food Safety Authority, Question NEFSA-Q-2007–093. “EFSA provisional statement on a request from the European Commission related to melamine and structurally related to compounds such as cyanuric acid in protein-rich ingredients used for food and feed”, http://www.efsa.europa.eu/en/scdocs/scdoc/1047.htm [4 July 2007]
[2]        S. Ehling, S. Tefera, I.P. “Ho, High-performance liquid chromatographic method for the simultaneous detection of the adulteration of cereal flours with melamine and related triazine by-products ammeline, ammelide, and cyanuric acid”, Food Addit. Contam., 24, 1319–1325, 2007.
[3]        C.A. Brown, K.S. Jeong, R. H. Poppenga, B. Miller, A.E. Ellis, K.I. Kang, S. Sum, A.M. Cistola, S.A. Brown, “Outbreaks of renal railure associated with melamine and cyanuric acid in dogs and cats in 2004 and 2007”, J. Vet. Diagn. Invest. 19, 525–531, 2007. 
[4]        N. Vasimalai, S.A. John, “Picomolar melamine enhanced the fluorescence of gold nanoparticles: Spectrofluorimetric determination of melamine in milk and infant formulas using functionalized triazole capped goldnanoparticles”, Biosens. Bioelectron. 42, 267–272, 2013.
[5]        K. Sharma, M. Paradakar, “The melamine adulteration scandal”, Food Sec., 2, 97-107, 2010.
[6]        Y. Liu, E.E.D. Todd, Q. Zhang, J. Shi, X. Liu, “Recent developments in the detection of melamine”, Biomed. Biotechnol., 13, 525-532, 2012.
[7]        F. Sun, W. Ma, L. Xu, Y. Zhu, L. Liu, C. Peng, L. Wang, H. Kuang, C. Xu, “Analytical methods and recent developments in the detection of melamine”, Trends Analyt. Chem., 29, 1239–1249, 2010.
[8]        M. Ritota, P. Manzi, “Melamine detection in milk and dairy products: traditional analytical methods and recent developments”, Food Anal. Methods, 11, 128–147, 2018.
 
[9]        Y. Ting, J. Deng, X. Lin, L. Ding, Y. Li, H. Li, X. Ting, “Electrochemical sensor based on a poly(para-aminobenzoic acid) film modified glassy carbon electrode for the determination of melamine in milk”. Electrochim. Acta 56, 4595–4602, 2011.
[10]      K. Rovina, S. Siddiquee, “A review of recent advances in melamine detection techniques”, J. Food Compost Anal., 34, 25-38, 2015.
[11]      D.B. Liu, Z. Wang, X.Y. Jiang, “Gold nanoparticles for the colorimetric and fluorescent detection of ions and small organic molecules”. Nanoscale., 3, 1421–1433, 2011.
[12]      D. Vilela, M. C. González, A. Escarpa, “Sensing colorimetric approaches based on gold and silver nanoparticles aggregation: Chemical creativity behind the assay. A review”, Anal. Chim. Acta, 751, 24– 43, 2012.
 
[13]      A.P. V.S, P. Joseph, K.D. S.C.G, S. Lakshmanan, T. Kinoshita, S. Muthusamy, “Colorimetric sensors for rapid detection of various analytes”, Mater. Sci. Eng. C, 78, 1231-1245, 2017.
[14]      J.S. Lee, P.A. Ulmann, M.S. Han, C.A. Mirkin, “A DNA−gold nanoparticle-based colorimetric competition assay for the detection of cysteine”, Nano Lett., 8, 529–533, 2008.
[15]      M.H. Jazayeri, T. Aghaie, A. Avan, M. R. S. Ghaffari, “Colorimetric detection based on gold nano particles (GNPs): An easy, fast, inexpensive, low-cost and short time method in detection of analytes (protein, DNA, and ion)”, Sens. Bio-Sens. Res., 20, 1-8, 2018.
[16]      M.S. Han, A.K.R. Lytton-Jean, B.K. Oh, J. Heo, C.A. Mirkin, “Colorimetric screening of DNA‐binding molecules with gold nanoparticle probes”, Angew. Chem., Int. Ed., 45, 1807–1810, 2006.
[17]      J.S. Lee, A.K.R. Lytton-Jean, S.J. Hurst, C.A. Mirkin, “Silver nanoparticle−oligonucleotide conjugates based on DNA with triple cyclic disulfide moieties”. Nano Lett., 7, 2112–2115, 2007.
[18]      Y. Chen, J. Aveyard, R. Wilson, “Gold and silver nanoparticles functionalized with known numbers of oligonucleotides per particle for DNA detection”. Chem. Commun., 2804–2805, 2004.
[19]      H. Li, Y. Bian, “Selective colorimetric sensing of histidine in aqueous solutions using cysteine modified silver nanoparticles in the presence of Hg2+”. Nanotechnology, 20, 145502–145507. (2009).
[20]      V.T. Hoang, N.X. Dinh, N. L. Trang, N. TienKhi, N. V. Quy, P. A. Tuan, D. Q. Tri, L. H. Thang, T. Q. Huy, A.T. Le, “Functionalized silver nanoparticles-based efficient colorimetric platform: Effects of surface capping agents on the sensing response of thiram pesticide in environmental water samples”, Mater. Res. Bull., 139, 111278, 2021.
[21]      D. Xiong, H. Li, “Colorimetric detection of pesticides based on calixarene modified silver nanoparticles in water”. Nanotechnology, 19, 465502–465507, 2008.
[22]      C. Han, L. Zhang, H. Li, “Highly selective and sensitive colorimetric probes for Yb3+ ions based on supramolecular aggregates assembled from β-cyclodextrin–4,4′-dipyridine inclusion complex modified silver nanoparticles”. Chem. Commun., 3545–3547, 2009.
[23]      S.S.J. Xavier, C. Karthikeyan, G.G. kumar, A.R. Kim, D.J. Yoo, “Colorimetric detection of melamine using β-cyclodextrin-functionalized silver nanoparticles”, Anal. Methods, 6, 8165-8172, 2014.
[24]      Y. Ma, H. Niu, X. Zhang, Y. Cai, “One-step synthesis of silver/dopamine nanoparticles and visual detection of melamine in raw milk”, Analyst, 136, 4192-4196, 2011.
[25]      W.F. Wang, Y. Qiang, X-H. Meng, J-L. Yang, Y-P. Shi, “Ultrasensitive colorimetric assay melamine based on in situ reduction to formation of CQDs-silver nanocomposite”, Sens. Actuators B: Chem. , 260, 808-815, 2018.
[26]      J.V. Rohit, S.K. Kailasa, “5-Sulfo anthranilic acid dithiocarbamate functionalized silver nanoparticles as a colorimetric probe for the simple and selective detection of tricyclazole fungicide in rice samples”, Anal. Methods, 6, 5934-5941, 2014.
[27]      V.N. Mehta, J.V. Rohit, S.K. Kailasa, “Functionalization of silver nanoparticles with 5- sulfoanthranilic acid dithiocarbamate for selective colorimetric detection of Mn2+ and Cd2+ ions”, New J. Chem., 40, 4566-4574, 2016.
[28]      V.N. Mehta, A.K. Mungara, S.K. Kailasa, “Dopamine dithiocarbamate functionalized silver nanoparticles as colorimetric sensors for the detection of cobalt ion”, Anal. Methods, 5, 1818-1822, 2013.
[29]      H. Li, L. Zhang, Y. Yao, C. Han, S. Jin, “Synthesis of aza-crown ether-modified silver nanoparticles as colorimetric sensors for Ba2+”, Supramol. Chem. 22, 544–547, 2010.
[30]      J.V. Rohit, S.K. Kailasa, “Cyclen dithiocarbamate-functionalized silver nanoparticles as a probe for colorimetric sensing of thiram and paraquat pesticides via host–guest chemistry”, J. Nanopart. Res., 16, 2585-2601, 2014.
[31]      S. Bothra, J.N. Solanki, S.K. Sahoo, J.F. Callan, “Anion-driven selective colorimetric detection Hg2+ and Fe3+ using functionalized silver nanoparticles”, RSC Adv., 4, 1341-1346, 2014.
[32]      C. Han, H. Li, “Visual detection of melamine in infant formula at 0.1 ppm level based on silver nanoparticles” Analyst, 135, 583-588, 2010.
[33]      N. Azizi, F. Aryanasab, M.R. Saidi, “Straightforward and highly efficient catalyst-free one-pot synthesis of dithiocarbamates under solvent-free conditions”, Org. Lett. 8, 5275-5277, 2006.
[34]      G.L. Carballo, L. Higueras, R. Gavara and P.H. Munoz, “Silver ions release from antibacterial chitosan films containing in situ generated silver nanoparticles”, J. Agric. Food Chem., 61, 260-267, 2013.
[35]      X. Wang, Y. Zou, J. Zhu and Y. Wang, “Silver cholesteric liquid crystalline: shape-dependent assembly and plasmonic chiroptical response”, J. Phys. Chem. C, 117, 14197-14205, 2013.
[36]      J. Song, F. Wu, Y. Wan, L.H. Ma, “Visual test for melamine using silver nanoparticles modified with chromotropic acid”, Microchim Acta, 181, 1267-1274, 2014.
[37]      J. Song, F. Wu, Y. Wan, L.H. Ma, “Colorimetric detection of melamine in pretreated milk using silver nanoparticles functionalized with sulfanilic acid”, Food Control, 50, 356-361, 2015.
[38]      H.­ Ping, M. Zhang, H. Li, S. Li, Q. Chen, C. Sun, T. Zhang, “Visual detection of melamine in raw milk by label-free silver nanoparticles”, Food Control, 23, 191-197, 2012.
[39]      H.P. Borase, C.D. Patil, R.B. Salunkhe, R.K. Suryawanshi, B.K. Salunke, S.V. Patil, “Bio functionalized silver nanoparticles as a novel colorimetric probe for melamine detection in raw milk”, Biotechnol. Appl. Biochem, 62, 652-662, 2015.
[40]      H. Wang, D. Chen, L. Yu, M. Chang, L. Ci, “One-step, room temperature, colorimetric melamine sensing using an in-situ formation of silver nanoparticles through modified Tollens process”,  Spectrochim. Acta. A, 137, 281-285, 2015.
[41]      M.F. Alam, A.A. Laskar, S. Ahmed, M.A. Shaida, H. Younus , “Colorimetric method for the detection of melamine using in-situ formed silver nanoparticles via tannic acid”, Spectrochim. Acta A, 183, 17-22, 2017.
[42]      J. Kaur Rajput, J. Kaur Rajput, “Bio-polyphenols promoted green synthesis of silver nanoparticles for facile and ultra-sensitive colorimetric detection of melamine in milk”, Biosens. Bioelectron. 120, 153-159, 2018.