رسوب‏گذاری نانوکامپوزیت‏های اکسید گرافن/نقره با استفاده از جت پلاسمای غیر حرارتی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه فیزیک، دانشکده علوم پایه، دانشگاه ولی عصر(عج)، رفسنجان، ایران

2 گروه آموزشی فیزیک، دانشکده علوم پایه، دانشگاه ولی عصر (عج) رفسنجان

چکیده

در این مقاله، نانوچندسازه‏های اکسید گرافن/نقره (GO/Ag) با استفاده از یک جت پلاسمای غیر حرارتی تولید شد. در این روش از یک محلول شامل نیترات نقره و اکسید گرافن (GO) به عنوان پیش‏ماده استفاده شد. آئروسل از قطرات محلول پیش‏ماده با ورود به پلاسما احیا شده و کامپوزیت GO/Ag بر سطح زیرلایه رسوب‏گذاری شد. ساختار بلوری و ریخت­شناسی نانوچندسازه‏های چاپ شده با کمک آنالیز پراش پرتوی ایکس، میکروسکوپ الکترونی روبشی گسیل میدانی، طیف نگاری پراکندگی انرژی پرتو ایکس و طیف سنجی رامان مورد بررسی قرار گرفت. نتایج پراش پرتوی ایکس نشان داد نانوذرات نقره با ساختار بلوری مکعبی وجوه مرکز پر رسوب‏گذاری شده‏اند. تصاویر میکروسکوپ الکترونی روبشی گسیل میدانی تایید می‏کند که نانوچندسازه‏های GO/Ag روی زیرلایه‏های شیشه‏ چاپ شده است. آنالیز طیف نگاری پراکندگی انرژی پرتو ایکس تشکیل ذرات نقره بر سطوح اکسید گرافن را تایید کرد. طیف رامان اکسید گرافن دارای باندهای ضعیف D و G در cm-11355 و cm-11590 است. شدت این باندها در کامپوزیت اکسید گرافن/ نقره به شدت افزایش می‏یابد.

کلیدواژه‌ها


عنوان مقاله [English]

Deposition of graphene oxide/silver nanocomposite using non-thermal plasma jet

نویسندگان [English]

  • Mahdi Shariat 1
  • Alireza Mazlumi 1
  • Masoud Karimipour 1
  • Mahdi Molaei 2
1 Department of Physics, Faculty of Science, Vali-e-Asr University of Rafsanjan, Iran.
2 Department of Physics, Faculty of Science, Vali-e-Asr University of Rafsanjan, Iran
چکیده [English]

In this paper, a direct deposition method was used to print graphene oxide/silver (GO/Ag) nanocomposites from silver nitrate and graphene oxide suspension with reduction using a non-thermal plasma jet. Aerosol droplets of the solution were reduced to GO/Ag nanocomposite in the plasma and deposited on the substrate. The hybrid materials were characterized by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy and Raman spectroscopy. The XRD results showed that the face centered cubic phase of Ag nanoparticles were developed in crystalline planes. The FESEM images confirmed that graphene oxide surfaces were decorated by Ag nanoparticles. The EDS analysis demonstrated that Ag was introduced on GO surface successfully via the plasma jet. GO exhibited distinctive Raman scattering for its D and G band, which were at 1355cm-1 and 1590cm-1, respectively, but they were weak for sensitive quantification purpose. By deposition silver nanoparticles on the surface of graphene oxide Both D and G bands of GO get enhanced.

کلیدواژه‌ها [English]

  • nanocomposite
  • silver nanoparticles
  • graphene oxide
  • non-thermal plasma jet
[1]        J. Kastner, T. Faury, H. M. Außerhuber, T. Obermüller, H. Leichtfried, et al., "Silver-Based Reactive Ink for Inkjet-Printing of Conductive Lines on Textiles", Microelectronic engineering, 176, 84-88, 2017.
[2]        D. Zhu, and M. Wu, "Highly Conductive Nano-Silver Circuits by Inkjet Printing", Journal of Electronic Materials, 47, 5133-47, 2018.
[3]        S. Agrawal, M. Bhatt, S. K. Rai, A. Bhatt, P. Dangwal, et al., "Silver Nanoparticles and Its Potential Applications: A Review", J. Pharmacogn. Phytochem, 7, 930-37, 2018.
[4]        A. A. Yaqoob, K. Umar, and M. N. M. Ibrahim, "Silver Nanoparticles: Various Methods of Synthesis, Size Affecting Factors and Their Potential Applications–a Review", Applied Nanoscience, 10, 1369-78, 2020.
[5]        J. Shao, B. Wang, J. Li, J. A. Jansen, X. F. Walboomers, et al., "Antibacterial Effect and Wound Healing Ability of Silver Nanoparticles Incorporation into Chitosan-Based Nanofibrous Membranes", Materials Science and Engineering: C, 98, 1053-63, 2019.
[6]        A. Vázquez-Rodríguez, X. G. Vasto-Anzaldo, A. Leon-Buitimea, X. Zarate, and J. R. Morones-Ramírez, "Antibacterial and Antibiofilm Activity of Biosynthesized Silver Nanoparticles Coated with Exopolysaccharides Obtained from Rhodotorula Mucilaginosa", IEEE transactions on nanobioscience, 19, 498-503, 2020.
[7]        S. W. Chook, C. H. Chia, S. Zakaria, M. K. Ayob, K. L. Chee, et al., "Antibacterial Performance of Ag Nanoparticles and Aggo Nanocomposites Prepared Via Rapid Microwave-Assisted Synthesis Method", Nanoscale research letters, 7, 1-7, 2012.
[8]        C. Li, X. Wang, F. Chen, C. Zhang, X. Zhi, et al., "The Antifungal Activity of Graphene Oxide–Silver Nanocomposites", Biomaterials, 34, 3882-90, 2013.
[9]        J. Paredes, S. Villar-Rodil, A. Martínez-Alonso, and J. Tascon, "Graphene Oxide Dispersions in Organic Solvents", Langmuir, 24, 10560-64, 2008.
[10]      H. Zheng, D. Ni, Z. Yu, and P. Liang, "Preparation of Sers-Active Substrates Based on Graphene Oxide/Silver Nanocomposites for Rapid Zdetection of L-Theanine", Food chemistry, 217, 511-16, 2017.
[11]      J. Tang, Q. Chen, L. Xu, S. Zhang, L. Feng, et al., "Graphene Oxide–Silver Nanocomposite as a Highly Effective Antibacterial Agent with Species-Specific Mechanisms", ACS applied materials & interfaces, 5, 3867-74, 2013.
[12]      J. Jang, Y. Choi, M. Tanaka, and J. Choi, "Development of Silver/Graphene Oxide Nanocomposites for Antibacterial and Antibiofilm Applications", Journal of Industrial and Engineering Chemistry, 83, 46-52, 2020.
[13]      ا. راحله, and م. ف. رسول, "ساخت حسگر زیستی پراکندگی رامان ارتقا یافته سطحی بر پایه نانو ساختارهای متخلخل نقره رشد یافته بر روی بستر شیشه و استفاده از آن برای آشکارسازی مولکول Lysine در غلظت های کم", لیزر در پزشکی, 12, 10, 1394.
[14]      P. Garg, R. Soni, and R. Raman, "Graphene Oxide–Silver Nanocomposite Sers Substrate for Sensitive Detection of Nitro Explosives", Journal of Materials Science: Materials in Electronics, 31, 1094-104, 2020.
[15]      F. Zeng, D. Xu, C. Zhan, C. Liang, W. Zhao, et al., "Surfactant-Free Synthesis of Graphene Oxide Coated Silver Nanoparticles for Sers Biosensing and Intracellular Drug Delivery", ACS Applied Nano Materials, 1, 2748-53, 2018.
[16]      M. Zainy, N. Huang, S. V. Kumar, H. Lim, C. Chia, et al., "Simple and Scalable Preparation of Reduced Graphene Oxide–Silver Nanocomposites Via Rapid Thermal Treatment", Materials Letters, 89, 180-83, 2012.
[17]      K. Hareesh, J. Williams, N. Dhole, K. Kodam, V. Bhoraskar, et al., "Bio-Green Synthesis of Ag–Go, Au–Go and Ag–Au–Go Nanocomposites Using Azadirachta Indica: Its Application in Sers and Cell Viability", Materials Research Express, 3, 075010, 2016.
[18]      B. Neppolian, C. Wang, and M. Ashokkumar, "Sonochemically Synthesized Mono and Bimetallic Au–Ag Reduced Graphene Oxide Based Nanocomposites with Enhanced Catalytic Activity", Ultrasonics sonochemistry, 21, 1948-53, 2014.
[19]      Z. Bahrami, M. R. Khani, and B. Shokri, "Cylindrical Dielectric Barrier Discharge Plasma Catalytic Effect on Chemical Methods of Silver Nano-Particle Production", Physics of Plasmas, 23, 113501, 2016.
[20]      M. Shariat, M. Karimipour, and M. Molaei, "Synthesis of Cds Quantum Dots Using Direct Plasma Injection in Liquid Phase", Plasma Chemistry and Plasma Processing, 37, 1133-47, 2017.
[21]      J. Hong, S. Yick, E. Chow, A. Murdock, J. Fang, et al., "Direct Plasma Printing of Nano-Gold from an Inorganic Precursor", Journal of Materials Chemistry C, 7, 6369-74, 2019.
[22]      M. Shariat, M. Karimipour, and M. Molaei, "Influence of Ambient Gas on the Optical Properties of Cds Quantum Dots Prepared by Plasma-Liquid Interactions", Journal of Luminescence, 207, 282-87, 2019.
[23]      P. Rumbach, D. M. Bartels, R. M. Sankaran, and D. B. Go, "The Effect of Air on Solvated Electron Chemistry at a Plasma/Liquid Interface", Journal of Physics D: Applied Physics, 48, 424001, 2015.
[24]      R. P. Gandhiraman, V. Jayan, J.-W. Han, B. Chen, J. E. Koehne, et al., "Plasma Jet Printing of Electronic Materials on Flexible and Nonconformal Objects", ACS applied materials & interfaces, 6, 20860-67, 2014.
[25]      R. P. Gandhiraman, E. Singh, D. C. Diaz-Cartagena, D. Nordlund, J. Koehne, et al., "Plasma Jet Printing for Flexible Substrates", Applied Physics Letters, 108, 123103, 2016.
[26]      M. Tsumaki, K. Nitta, S. Jeon, K. Terashima, and T. Ito, "Development of Plasma-Assisted Inkjet Printing and Demonstration for Direct Printing of Conductive Silver Line", Journal of Physics D: Applied Physics, 51, 30LT01, 2018.
[27]      A. Dey, A. Lopez, G. Filipič, A. Jayan, D. Nordlund, et al., "Plasma Jet Based in Situ Reduction of Copper Oxide in Direct Write Printing", Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 37, 031203, 2019.
[28]      A. Dey, S. Krishnamurthy, J. Bowen, D. Nordlund, M. Meyyappan, et al., "Plasma Jet Printing and in Situ Reduction of Highly Acidic Graphene Oxide", ACS nano, 12, 5473-81, 2018.
[29]      R. Ramamurti, R. P. Gandhiraman, A. Lopez, P. Doshi, D. Nordlund, et al., "Atmospheric Pressure Plasma Printing of Nanomaterials for Iot Applications", IEEE Open Journal of Nanotechnology, 1, 47-56, 2020.
[30]      J. Chen, B. Yao, C. Li, and G. Shi, "An Improved Hummers Method for Eco-Friendly Synthesis of Graphene Oxide", Carbon, 64, 225-29, 2013.
[31]      S. K. Mishra, S. N. Tripathi, V. Choudhary, and B. D. Gupta, "Spr Based Fibre Optic Ammonia Gas Sensor Utilizing Nanocomposite Film of Pmma/Reduced Graphene Oxide Prepared by in Situ Polymerization", Sensors and Actuators B: Chemical, 199, 190-200, 2014.
[32]      A. M. Awwad, N. M. Salem, and A. O. Abdeen, "Green Synthesis of Silver Nanoparticles Using Carob Leaf Extract and Its Antibacterial Activity", International journal of Industrial chemistry, 4, 1-6, 2013.
[33]      Y. Jiang, W.-N. Wang, D. Liu, Y. Nie, W. Li, et al., "Engineered Crumpled Graphene Oxide Nanocomposite Membrane Assemblies for Advanced Water Treatment Processes", Environmental science & technology, 49, 6846-54, 2015.
[34]      G. Ding, S. Xie, Y. Liu, L. Wang, and F. Xu, "Graphene Oxide-Silver Nanocomposite as Sers Substrate for Dye Detection: Effects of Silver Loading Amount and Composite Dosage", Applied Surface Science, 345, 310-18, 2015.
[35]      X. Zhang, J. Zhang, J. Quan, N. Wang, and Y. Zhu, "Surface-Enhanced Raman Scattering Activities of Carbon Nanotubes Decorated with Silver Nanoparticles", Analyst, 141, 5527-34, 2016.
[36]      Y. Zhao, Y. J. Zhang, J. H. Meng, S. Chen, R. Panneerselvam, et al., "A Facile Method for the Synthesis of Large‐Size Ag Nanoparticles as Efficient Sers Substrates", Journal of Raman Spectroscopy, 47, 662-67, 2016.