بررسی اثر میدان الکترواستاتیک و یونی هیدروژن $({}^+$) بر پارامترهای ساختاری و کوانتومی برهم کنش برموسیانید BrCN با نانوخوشه ${ m B}_{12}{ m N}_{12}$: با استفاده از نظریه تابعی چگالی

رضوان الوند ، مهدی رضایی صامتی * و رضا رجایی خراسانی ا

گروه شیمی، دانشکده علوم پایه، دانشگاه آزاد واحد تهران شمال، تهران ، ایران[\] گروه شیمی کاربردی، دانشکده علوم پایه، دانشگاه ملایر، ملایر ، ایران^{۲®}

چکیده: در این مقاله، تاثیر میدان الکترواستاتیک^۱ و میدان یونی هیدروژن (⁺nH) بر برهم کنش برموسیانید با نانوخوشه بور نیترید (B₁₂N₁2) با استفاده از نظریه تابعی چگالی^۲ و نظریه تابع چگالی وابسته به زمان^۳ مورد بررسی قرار گرفته است. با استفاده از ساختارهای بهینه شده پارامترهای ساختاری، الکتریکی، کوانتومی، ترمودینامیکی، انرژی جذب، نظریه کوانتومی اتم در مولکول^۲، گرادیان چگالی کاهش یافته⁶، ویژگی نوری غیرخطی²و طیف های فرابنفش مرئی^۷ محاسبه شده است. نظریه کوانتومی اتم در مولکول^۲، گرادیان چگالی کاهش یافته⁶، ویژگی نوری غیرخطی²و طیف های فرابنفش مرئی^۷ محاسبه شده است. نتایج حاصل نشان داد که مقدار انرژی جذب، آنتالپی(ΔH) و انرژی آزاد گیبس(ΔG) برای همه حالتهای جذبی منفی بوده و فرایند جذب B₁2N بر سطح B₁2N₁2 از نظر ترمودینامیکی گرماده بوده و خود به خودی است. با افزایش قدرت میدان الکتریکی از B₁2N می یاد SEF_{z-0.07}3 مو قدرت یونی انرژی جذب بیشتر شده و گاف انرژی نانوخوشه بطور قابل توجهای کاهش مییابد، بنابراین، حساسیت نانوخوشه بور نیترید برای جذب و تشخیص ماده سمی برمو سیانید در حضور میدان الکتریکی و یونی افزایش قابل توجهای می یابر

واژه های کلیدی: نانوخوشه بورنیترید، میدان الکتریکی و یونی، حسگر برموسیانید، نظریه تابعی چگالی، پارامترهای ساختاری و کوانتومی

mrsameti@malayeru.ac.ir*

¹ Static electric field(SEF)

- ² Density Functional theory (DFT)
- ³ Time dependent –DFT(TD-DFT)
- ⁴ Quantum theory of atom in molecule(QAIM)
- ⁵ Reduced density of gradient (RDG)
- ⁶ Nonlinear optical properties(NLO)
- ⁷ UV-visible

تاریخ دریافت:۱۳۹۹/۱۰/۱۵

تاریخ پذیرش: ۱۳۹۹/۱۱/۲۷

بهار ۱۴۰۱ | شماره ۱ | سال نهم

49

۱– مقدمه

فولرنهای خانواده گروه سوم و پنجم جدول تناوبی (X_nY_n; X=B, Al and Y=N, P)، به دلیل داشتن ویژگیهای منحصر به فرد ساختاری، الکترونیکی، مغناطیسی و نوری و همچنین، جذب و مشخص کردن بسیاری از ترکیبات سمی مورد توجه بسیاری از پژوهشگران قرار گرفته است[۹–۱]. در بین این تركيبات نانوخوشه بور نتيريد با دوازده اتم نيتروژن و دوازده اتم بور (B12N12) بیشتر از سایر ترکیبات مورد بررسی نظری و تجربی قرار گرفته است. این ترکیب دارای پهنای باند گسترده، ثابت دی الکتریک، هدایت گرمایی بالا است. به همین خاطر برای مطالعه برهم-کنش آن با ترکیبات متنوع از جمله هالیدهای هيدروژن، كافئين، نيكوتين، آدنين، يوراسيل، آمينو اسیدها و مورد توجه گسترده قرار گرفته است[۱۰-۲۴]. بررسی نتایج جذب یون [−]SCN بر روی نانو خوشه $B_{12}N_{12}$ و $B_{16}N_{16}$ خالص و جایگزین شده با آلومينيم نشان داد كه جايگزين كردن آلومينيم انرژى جذب یون تیو سیانات را بر روی سطح AlB₁₁N₁₂ به طور قابل توجهی بهبود می بخشد و نانوخوشه جایگزین شده برای جذب مناسبتر است[۲۲]. بررسی دیگری نشان داد که جذب متانول و آسپیرین بر سطح نانوخوشه B₁₂N₁₂ از نظر ترمودینامیکی مساعد بوده و از طرف دیگر جذب متانول رسانایی نانوخوشه را به مقدار قابل توجهی تغییر میدهد که این عامل در تهیه حسگر متانول نقش قابل توجهی دارد [۲۵]. مطالعه نظری برهم کنش گازهای O3، SO2، Jug و H2 با نانوخوشه بورنيتريد نشاندار شده با نيكل و آلومينوم نشان داد که فرایند جذب در این حالت بسیار مساعدتر از حالت خالص است و ورود یک اتم ناخالص در این ساختار جذب این ترکیبات را بهتر می کند [۲۸–۲۶]. ترکیبات متنوع سیانوری که از ترکیب

نيتروژن و کربن به وجود ميآيند، ممکن است به صورت طبيعي يا در اثر فعل و انفعال تركيبات متفاوت بوجود آید که به سرعت از طریق استنشاق یا تماس از راه پوست با قسمتهای متفاوت بدن ترکیب شده و منجر به مسمومیت مرگ انسان یا سایر حیوانات می شود. اگر این ماده از طریق بلع یا استنشاق وارد بدن انسان شود به سرعت وارد خون شده و در دوزهای کم می تواند به تیوسیانات تبدیل شده که خطر کمتری دارد و از طریق ادرار دفع می شود. اما در دوزهای بالا بدن توانایی تبدیل آن به تیوسیانات را ندارد و باعث مسمومیت می شود. سیانور به قسمت هایی از بدن که به اکسیژن بسیار حساس هستند حمله میکند و مانع رسيدن اكسيژن به آنها مي شود. سيستم عصبي، ريه و قلب نخستین قسمتهایی هستند که سیانور آنها را تحت تاثير قرار مي دهد. هالو سيانيدها (مثل: CICN ،BrCN وICN) از جمله تركيبات سمى از خانواده سیانورها هستند که تاثیر آنها بر بدن مشابه اثر هیدروژن سیانید است. این ترکیبات که در صنایع متفاوت شیمیایی تولید می شوند منجر به تلفات زیادی در انسانها و حیوانات و محیط زیست می شوند، به همين خاطر تهيه جاذب وحسكر مناسب اين تركيبات یک امر بسیار ضروری بوده و مورد توجه بسیاری از فعالیتهای تجربی و نظری شده است. نتایج حاصل پژوهشهای اخیر ثابت کرده است که نانوذرات بعلت داشتن ساختارالكتريكي مناسب مي توانند بهعنوان جاذب و حسگر قابل استفاده ای برای این ترکیبات بکار روند[۲۹–۳۰]. با این هدف در این پروژه بر آن شدیم که تاثیر میدان یونی $(n\mathrm{H}^+)$ و میدان الكترواستاتيك را بر جذب ماده سمى برموسيانيد مورد BrCN را بر نانوخوشه بور نیترید B₁₂N₁₂ مورد بررسی قرار داده و کارایی نانو خوشه در جذب و هشدار حضور این ماده آلاینده در محیط زیست را مقایسه کنیم. در این زمینه تاکنون هیچ گزارشی ارائه نشده است پس، نتایج حاصل این پژوهش می تواند پیشنهاد

Nanomeghyas. www.nanomeghyas.ir

مناسبی برای تهیه جاذب قوی یا حسگر حساس نسبت به برموسیانید در صنعت و محیط زیست باشد.

۲- روش محاسباتی

در این پژوهش، به منظور بررسی اثر جذب برمو سیانید بر سطح نانوخوشه $B_{12}N_{12}$ خالص و تساندارشده با (H+، H+، H+) از نمادهای , **D**, نماندارشده با (H+، H+، H+) از نمادهای , **D**, a b c, **B**, **A** استفاده شده است، و به منظور مشخص کردن جهتیابی برمو سیانید از دو انتهای برم و نیتروژن از زیروندهای **a** و **d** استفاده شده است . همه ساختارهای ممکن جذبی مورد بررسی قرار گرفته و ساختارهای که پایدار بوده و فاقد فرکانس ارتعاشی ساختارهای که پایدار بوده و فاقد فرکانس ارتعاشی منفی بودند را با نظریه تابعی چگالی و در سطح نظری منفی بودند را با نظریه تابعی چگالی و در سطح نظری گوسین

روابط ۲تا۳ محاسبه شده است. در این روابط مقدار انرژی BrCN، BrCN/B₁₂N₁₂ و B₁₂N₁₂ به ترتیب انرژیهای کمپلکس نانو خوشه بور نیترید و برموسیانید، برموسیانید خالص و نانو خوشه بور نیترید خالص است، نتایج حاصل از محاسبات در جدول ۱ آورده شده است. $E_{ads} = E_{BrCN/B_{12}N_{12}} - (E_{B_{12}N_{12}} + E_{BrCN})$ (1)

 $\Delta G = G_{BrCN/B_{12}N_{12}} - (G_{B_{12}N_{12}} + G_{BrCN}) (2)$

 $\Delta H = H_{BrCN/B_{12}N_{12}} - (H_{B_{12}N_{12}} + H_{BrCN})(3)$ همچنین، محاسبات نظریه اتم در مولکول (AIM) برای همچنین، محاسبات نظریه اتم در مولکول (AIM) برای تعیین پارامترهای توپولوژی پیوند، گرادیان چگالی کاهش یافته (RDG)، ضرایب قطبش پذیری و فوق قطبش پذیری غیر خطی اپتیکی، ممان دوقطبی و قطبش پذیری غیر خطی اپتیکی، ممان دوقطبی و چگالی بار NBO استفاده شده و نتایج مورد بررسی قرار گرفته است. با استفاده ازنتایج انرژی های بالاترین قرار گرفته است. با استفاده ازنتایج انرژی های بالاترین اربیتال مولکولی اشغال شده(HOMO) و پایین ترین اربیتال مولکولی اشغال نشده(UMO)، انرژی گاف اربیتال مولکولی اشغال نشده(LUMO)، انرژی گاف اربیتال مولکولی اشغال نشده(CMO)، انرژی گاف اربیتال مولکولی اشغال و پایا نشده(LUMO)، انرژی گاف اربیتال مولکولی اشغال مشده(CMO)، انرژی گاف اربیتال مولکولی اشغال مشده(CMO)، انرژی گاف اربیتال مولکولی اشغال مشده(P=(E_{LUMO}-E_{HOMO})/2) و پارامترهای انتقال بار ($\Delta N=-\mu/\eta$) برای تمام مدلهای جذبی محاسبه شدند و نتایج در جدول ۲ جمعآوری شده است [77-37].

D- تا -A-a شکل ۱ : ساختارهای بهینه شده برهم کنش برمو سیانید بر روی سطح نانو خوشه خالص و نشاندارشده با (۲H⁺ ، ۲H⁺ ، ۲H⁺) مداهای A-a تا -D (د (اینجا رنگ قرمز، آبی، توسی، صورتی و سبز مربوط به اتم های نیتروژن، بور ،کربن، برم و هیدروژن است).

۳–۱ بررسی پارامترهای ساختاری جذب

۳. نتايج و بحث

نتایج حاصل از ساختارهای بهینه شده نشان میدهد، زمانی که برموسیانید را از سمت برم به اتم بور نانوخوشه متصل میکنیم. پس از بهینه شدن ساختارها، برم از نانوخوشه دورتر شده و به سمت ساختارها، برم از نانوخوشه دورتر شده و به سمت نیتروژن نزدیک کنیم بطور محکم به بور متصل می-نیتروژن نزدیک کنیم بطور محکم به بور متصل می-شود. با استفاده از نتایج ساختارهای بهینه شده پارامترهای ساختاری از جمله طول پیوند (-B12N12) پارامترهای ساختاری از جمله طول پیوند و نانوخوشه پارامترهای ساختاری از دهماه طول پیوند (سازی آزاد (B12N12) و زاویه پیوند بین برمو سیانید و نانوخوشه جدول ۱: انرژی جذب (Eads)، آنتالپی(AH) و تغییر انرژی آزاد (AG) برحسب کیلو کالری برمول و ممان دوقطبی (b) برحسب دبای و چگالی بار NBO برمو سیانید همه مدلهای جذبی D-b TA-a

Model	Eads	p(nbo)	d	$\Delta \mathbf{G}$	$\Delta \mathbf{H}$
A-a	-41/85	./.۲	۲/۷۶	-41/18	-44/18
A-b	-42/28	./۲.	۲/15	- 41/ - 1	- 27/1.
B-a	-70/14	-/70	1./14	-117/-1	-77/77
B-b	-50/-1	-/٣٢	٩/٩١	-17/17	-77/77
C-a	-۳//۹۶	./14	۷/۵۱	-19/11	-۳۷/۷۱
C-b	-FV/D1	./47	5/41	-54/25	-50/19
D-a	- 57/0 -	./٣	٧/ ٩۶	- 11/144	-5-/98
D-b	-114/7-	-/0-	1./47	-9.4/84	-111/0-

با بررسی نتایج جدول ۱ مشاهده می شود که انرژی جذب، آنتالپی و انرژی آزاد گیبس همه حالتهای جذبی منفی بوده که نشان می دهد فرایند جذب گرماده بوده و از نظر ترمودینامیکی خود به خودی است. نکته قابل توجه آن است که فرایند جذب مدل d-d از نظر را آزاد می کند و مدل a-A کمترین انرژی را آزاد کرده و فرایند جذب آن کمتر خودبه خودی است. نکته جالب توجه آنست که با وارد کردن یونهای هیدروژن ممان دو قطبی سیستم افزایش قابل توجه می یابد زیرا ساختار تقارنی نانوخوشه تغییر کرده و مولکول قطبی تر می شود و همین عامل باعث می شود تا پیوند برمو سیانید بر نانوخوشه محکم تر شود. مجموع بار طبیعی

Nanomeghyas www.nanomeghyas.ir بورنیترید محاسبه شده است. نتایح حاصل نشان می-دهد که طول پیوند در گستره ۱/۵۲ تا ۲/۶۳ انگسترم و

زاویه پیوند نیز از ۸۵ تا ۱۱۵ درجه در تغییر است. مقايسه نتايج نشان مىدهد كه كوتاهترين فاصله پيوند مربوط به مدل D-b و بیشترین طول پیوند نیز مربوط به مدل A-a است. در ضمن با استفاده از انرژی پتانسیل ساختارهای بهینه شده انرژی جذب همه مدلها بر اساس رابطه ۱ محاسبه شده و نتاج حاصل در جدول شده است. جمعآوري ١ اربیتالهای پیوندی (NBO) ترکیب برمو سیانید مثبت بوده و نشان می دهد این ترکیب اثر الکترون دهندگی بر نانوخوشه دارد و با افزایش تعداد یونهای هیدروژن بار مثبت بیشتر شده و قطبیت مولکول نانو بیشتر می-شود و این عامل نشان می دهد پیوند نانو با برمو سیانید قوی تر شده است. روند تغییرات انرژی جذب، پارامترهای ترمودینامیکی و ممان دو قطبی در مدلهای جذبی b بصورت زیر تغییر میکند: -D-b>C b>B-b>A-b. در حالیکه روند تغییرات پارامترهای فوق در مدلهای جذبی a بعلت تغییر جهت یابی جذب برمو سیانید بر روی نانو خوشه منظم نبوه و روند زیر بر قرار است :

C-a>B-a>D-a>A-a آنست که بین ممان دوقطبی و بار NBO با انرژی جذب و پارامترهای ترمودینامیکی رابطه خطی مستقیمی بر قرار است، یعنی با افزایش ممان دو قطبی یا بار NBO انرژی جذب بیشتر و فرایند جذب خودبه خودی تر می شود و از طرف دیگر، هرچقدر تعداد ⁺H بیشتر شود قطبیعت نانوخوشه بیشتر می شود و فرایند جذب برموسیانید بر نانوخوشه مساعدتر می شود که از این ویژگی می توان در ساخت فیلتر و جاذب این ترکیب در صنعت استفاده کرد. فرکانسهای ارتعاشی و کششی پیوند در ناحیه فروسرخ برای تمام مدلهای جذبی محاسبه شده و نتایج حاصل از طیف های IR در شکل ۲ آورده شده است. بررسی نتایج نشان

Nanomeghyas www.nanomeghyas.ir

 cm^{-1} می دهد که در این طیفها نوار جذبی قوی در cm^{-1} می دهد که به ترتیب به کشش پیوند ۱۵۰۰ و ۸۰۰۰ ظاهر شده که به ترتیب به کشش پیوند C=C و D-Br مربوط است و با وارد شدن یونهای C=C cm⁻¹ و کشش پیوند های H-N و N-B در گستره m^{-1} N-ا و کشش پیوند های T۵۰۰ ظاهر می شود. که ارتعاش پیوند I^{-1} B در مدلهای جذبی b یعنی پیوند برمو سیانید از

جهت نیتروژن آن مشهودتر است. نتایج این بررسی نیز ثابت می کند که بین نانو خوشه و برمو سیانید پیوند مستحکمی از سر نیتروژن بر قرار شده است. نتایج محاسبات پارامترهای ترمودینامیکی را نیز این موضوع را تایید می کند.

شکل۲ : طیف های ریز قرمز لومو برای جذب برمو سیانید بر روی نانوخوشه خالص و نشاندارشده با یونهای ⁺H مدلهای جذبی A-a تا D-b تا

۳–۲– پارامترهای کوانتومی و اربیتالهای هومو[^] و لومو[°]

High occupied molecular orbital [^]

Low unoccupied molecular orbital ^{*}

بالاترین اربیتال مولکولی اشغال شده (هومو) و پایین ترین اربیتال مولکولی اشغال نشده(لومو)، از مهمترین پارامترهای هستند که از آنها می توان برای بررسی رفتار الکتریکی سیستمها و تغییر رسانایی آنها استفاده کرد. براین اساس همه محاسبات اربیتالهای هومو و لومو و انرژی مربوطه برای نانوخوشه بور نیترید در حضور برمو سیانید و میدان الکتریکی و یونی برای تمام حالتهای جذبی محاسبه شده و نتایج محاسبات مربوط به ساختارهای هومو و لومو در شکل ۳ و نتایج

محاسبات کوانتومی در جداول ۲ و S1 ضمیمه ارائه شده است. براساس نتایج حاصل از شکل ۳ مشاهده می شود که در تمام مدلهای جذبی بیشترین چگالی ابر الکترونی اربیتالهای هومو بر سطح نانوخوشه متمرکز شده است که این عامل نشان می دهد سطح نانوخوشه در اثر القایی الکترون دهندگی برموسیانید سرشار از الکترون شده و برای حمله گونههای الکترون دوست مناسب تر است.

Nanomeghyas

www.nanomeghyas.ir

شکل ۲: ساختارهای فضایی اربیتالهای هومو و لومو برای جذب برمو سیانید بر روی نانوخوشه خالص و نشاندارشده با یونهای ⁺Hمدلهای جذبی -A

در حالی که، بیشترین چگالی اربیتالهای لومو بر روی سطح برمو سیانید متمرگز بوده که نشان می دهد سطح برمو سیانید برای حمله گونههای هسته دوست مناسب تر است. این نتایج با میزان بار اربیتالهای طبیعی

NBO همخوانی قابل توجهی دارد. نکته قابل توجه آنست با افزایش تعداد یون های هیدروژن و قوی تر شدن میدان یونی باعث می شود که تراکم ارییتال هومو اطراف نانو بطور قابل توجهی نسبت به حالت اولیه

Nanomeghyas. www.nanomeghyas.ir

افزایش یافته و به دنبال آن واکنش پذیری نیز افزایش می یابد. با استفاده از انرژی های هومو و لومو توصیف-گرهای کوانتومی مانند انرژی پهنای باند، پتانسیل الکتروشیمیایی، سختی کروی، و پارامترهای انتقال بار محاسبه شده و نتایج در جدول۲ آورده شده است. بررسی نتایج جدول ۲ نشان میدهد که با جذب برموسیانید و قرارگرفتن یونهای هیدروژن بر نانوخوشه رفتار الکتریکی ترکیب تغییر میکند، بطوریکه در سطح انرژی هومو و لومو کاهش محسوسی مشاهده می شود که حاکی از اثر الکترون دهندگی برمو سیانید بر نانوخوشه است. نکته قابل توجه آنست که در اثر فرایند جذب و نشاندار کردن انرژی گاف کاهش چشم گیری داشته که نشان میدهد رسانایی نانوخوشه افزایش می یابد که این عامل در استفاده از نانو خوشه بعنوان حسگر این ترکیب دارای اهمیت زیادی است. سختی كروى سيستم نيز كاهش يافته است كه بيان مي كند تركيب مورد نظر فعال است. اما پتانسيل شيميايي

الكترونى سيستم كه نشان دهنده يايدارى كميلس نانو و برموسیانید است، منفی تر شده پس ترکیب حاصل پایدارتر است که این ویژگی با نتایج انرژی جذب و ويژگى ترموديناميكى سيستم همخوانى بسيار خوبى دارد. همانطور که در قسمت بالا گفته شد، ترکیب -D a پايدارترين تركيب بوده و تركيب A-a ناپايدارترين ترکیب است. بررسی نتایج پارامتر بار ΔN در همه مدلها مثبت است که نشان دهنده انتقال ابر الکترونی از برمو سیانید به سمت نانو خوشه می باشد که این نتیجه با نتایج هومو و لومو و بار اربیتالهای طبیعی پیوندی همخوانی خوبی دارد و ثابت می کند که اولا برموسیانید نقش دهندگی الکترون را دارد و ثانیا با افزایش تعداد یونهای هیدروژن این اثر بیشتر می کند و ترکیب هم قطبی تر شده و ویژگی الکتریکی آن بیشتر می شود که این امر در شناسایی برموسیانید در محیط زیست از اهمیت زیادی برخوردار است.

جدول ۲: پارامترهای کوانتومی جذب برمو سیانید بر روی نانوخوشه خالص و نشاندارشده با یونهای H⁺ مدلهای جذبی A-a

D-b l	;
-------	---

Model	A-a	A-b	B-a	B-b	C-a	C-b	D-a	D-b
E HOMO/eV	-٩/٩ -	-%/٩۴	- 17/89	- 14/84	- 18/68	- 15/41	-Y \/ YA	-7-/14
E LUMO/ eV	-/٩٩	/YA	-۳/۶۱	-۳/۵۱	-Y/	-8/77	- 14/21	-) -/۹۹
η/ •v	۵/۴۴	۴/۳۲	۴/۵۴	۴/۵۸	۴/۷۵	۴/۸۷	۴/۲۳	۴/۵۲
μ/ _{•V}	-4/40	-۴/۶۱	-1/25	-//-٩	-11/75	-11/81	- 11/ - F	- ι۵/۵γ
ΔN	-/٨١	۶- /۱	١/٧٩	1/175	۲/۴۷	۲/۳۸	۴/ ۲	٣/۴.
E_{gap}/e_{V}	۱۰/۸۹	N/80	٩/ -٨	9/15	٩/۵١	٩/٧۴	N/45	٩/ ١۴

رسانایی سیستم بیشتر شده و حساسیت نانو برای هشدار وجود برمو سیانید سمی در محیط افزایش یافته است، که این ویژگی برای ساخت حسگر حساس برای شناسایی و هشدار وجود این ترکیب در محیط زیست بسیار مهم است. نکته جالب توجه دیگر آنست که شیب تغییرات گاف انرژی با میدان الکتریکی خارجی برای مدل d-D بسیار تند بوده و نشان دهنده آنست که این ترکیب در حضور میدان خارجی حساسیت بیشتری برای تشخیص برمو سیانید سمی در به منظور بررسی اثر میدان الکتریکی خارجی بر رفتار الکتریکی سیستم و رسانایی نانوخوشه از میدانهای ۸۰/۰۰ ۲۰/۰۱، ۲۰/۰۰ ، ۲۰/۰۴، ۲۰/۵ و ۲۰/۰ واحد اتمی (a.u) استفاده شده است که در آن یک واحد اتمی معادل ۵۱۴/۲۲۴ ولت بر نانومتر(V/nm) است. نتایج حاصل از محاسبات در نمودار شکل ۴ ارائه شده است. بررسی نتایج نشان میدهد در تمام مدلهای جذبی با افزایش قدرت میدان خارجی گاف انرژی به مقدار قابل توجهای کاهش مییابد که نشان میدهد

Nanomeghyas.ir

محیط زیست دارد. نتایج کلی اینکار نشان میدهد وارد کردن میدان خارجی قوی باعث افزایش حساسیت و انتخابگری نانو خوشه به ترکیب مورد نظر میشود و بهتر است حسگر مورد نظر در میدانهای قوی استفاده شود که هم دقیق تر و هم از نظر اقتصادی مقرون به صرفه تر است. با استفاده از نرم افزار گوس سام[۳۷] نمودارهای چگالی حالتهای الکترونی جزیی^{۱۰} مربوط به همه مدلهای جذبی کمپلکس برمو سیانید و نانوخوشه خالص و نشاندار شده با یونهای هیدروژن در شکل ۵ رسم شده است.

شکل ۴: نمودار روند تغییرات انرژی گاف برای جذب برمو سیانید بر روی نانوخوشه خالص و نشاندارشده با یونهای ⁺Hمدلهای جذبی A-a تا D-b در حضور میدان الکتریکی ۰/۰۷۵ v/۰۷

در این اشکال نمودارهای سبز رنگ و آبی به ترتیب مربوط چگالی حالتهای الکترونی جزیی مولکول نانوخوشه خالص و نشاندارشده با یون های هیدروژن و مولکول برموسیانید که در گستره انرژی ۲۵– تا ۵ الکترون ولت است. بررسی دقیق این نمودارها نشان می دهد تعداد پیک های نانو خوشه هم بیشتر و هم بالاتر از پیک های برموسیانید است که این امر ناشی از وجود تعداد اتمها و اربیتالهای متنوع در نانوخوشه است. نکته جالب توجه آنست که با افزایش تعداد یونهای هیدروژن تعداد انتقالات الکترونی افزایش می یابد و تعداد قله ها بیشتر می شود. این عامل دو ویژگی دارد، نخست آنکه رسانایی نانوخوشه بیشتر می شود و دوم آنکه خاصیت فعالیت نوری نانوخوشه مشهودتر می شود و می توان آنرا با دستگاههای طیف بیشتر می شود و دوم آنکه خاصیت فعالیت نوری نانوخوشه مشهودتر می شود و می توان آنرا با رسانایی نانوخوشه و برموسیانید در حالت مدل جذبی ه- ۸ بیشترین و در مدل D- کمترین است. بیشترین هم پوشانی اومو نانوخوشه و برموسیانید در حالت مدل جذبی ه- ۸ بیشترین و در مدل D- کمترین است. بیشترین هم پوشانی اربیتالها در ناحیه هومو رخ داده است و این موضوع حاکی از آنست که الکترونهای پای (Π) برموسیانید بیشترین برهم کنش اثر القایی را با اربیتالهای نانوخوشه داشته و این عامل باعث کاهش انرژی گاف شده است. پس رسانایی کنش اثر القایی را با اربیتالهای نانوخوشه داشته و این عامل باعث کاهش انرژی گاف شده است. پس، رسانایی نانوخوشه را افزایش می یابد.

^{&#}x27;•Partial density of state (PDOS)

شکل ۵: نمودارهای PDOS برای جذب برموسیانید بر روی نانوخوشه خالص و نشاندارشده با یونهای ⁺H مدلهای جذبی A-a تا A-b تا

باشد نشان دهنده پيوند كووالانسى قوى، اگر هر پارامتر دو مثبت باشند مربوط به پیوند یونی یا $abla^2 \rho > 0 \quad H_{BCP} < 0$ الکترواستاتیک بودہ و اگر مقدار $H_{BCP} < 0$ و نشان دهنده پیوند کووالانسی متوسط است. نتایج حاصل از محاسبه نظریه اتم در مولکول در جدول ۳ جمع آوري شده است.

Nanomeghyas

www.nanomeghyas.ir

۳–۳ نظریه کوانتومی اتم در مولکول نظریه کوانتومی اتم در مولکول یکی از روشهای مهم در درک ماهیت ویژگی پیوند بین نانو و جذب شونده است [۳۸]. چگالی الکترونی کل(م)، چگالی الکترونی لاپلاس(
²ρ)، انرژی جنبشی(G_{BCP})، انرژی الكترونى كل(H_{BCP})، انرژى پتانسيل(V_{BCP})، مقادير ویژه ماتریس هس $(\lambda_1, \lambda_2, \lambda_3)$ در نقطه بحرانی ییوندBCP) نانوخوشه $B_{12}N_{12}$ محاسبه شده و نتایج در جدول ۳ گرد آوری شده است. بر اساس نتایج $H_{BCP}<0$ و $\nabla^2 \rho < 0$ نظریه اتم در مولکول اگر مقادیر

Bonding critical point " بهار ۱۴۰۱ | شماره ۱ | سال نهم

Model	ρ	∇ ² ρ	G(r)	V(r)	H(r)	EFL	LOL
A-a	-/۵۳	./.\۶.	۰/۰۰۳۵	- •/ • • ¥A	/۶	./.w.	-/ 1154
A-b	-/-۹Y1	-/7775	-/ ١۴٩٩	/۲.۶۷	- •/ •08V	-/ ١٣٣۶	-/ ٢٨٢ -
B-a	-/1188	-/۴۱V۱	-/ \YYA	- •/ 76 IT	/.772	./ ١۶٨.	-/51-1
B-b	-/ ١١٣٩	-/4747	۰/ ۱۷۷۶	/۲۴۹۹	/.٧١۶	-/ 1515	-/۳-۵۱
C-a	-/ -۵۶λ	-/ 14YA	./.۴۱۲	- •/ •fav	/	-/ ۲۵۳۹	-/٣۶٨۵
C-b	-/ 17° 11	-/۴۴۵۹	-/ 1997	/ 4444	- •/ •AVA	-/ 1947	-/٣٢٩٣
D-a	-/ -478	-/ -۸۹۵	./ . ۴۹۸	/-	/.***	-/ 1775	-/7771
D-b	-/ ١٣۴٩	-/4544	-/ ٣ ١٧٨	/~198	/\.W	-/۲١٧۶	-/۳۴۵۲

جدول ۳ : پارامترهای توپولوژی مربوط به نظریه اتم در مولکول جذب برمو سیانید بر روی نانوخوشه خالص و نشاندارشده با یونهای ^۲۰ مدلهای جذبی A-a تاb-D

 ${
m H}^+$ شکل ۶: نمودارهای RDG برای جذب برمو سیانید بر روی نانوخوشه خالص و نشاندارشده با یونهای ${
m H}^+$ شکل ۸-۵ تا D-b تا

براساس نتایج محاسبه شده جدول ۳، در تمام مدلهای بررسی شده مقادیر لاپلاس مثبت، (H(_{BCP} منفی، که نشان مى دهد پيوند بين نانوخوشه B₁₂N₁₂ و BrCN از نوع پیوند کووالانسی متوسط یعنی هم خاصیت کولانسی و هم خاصیت قطبی دارد، که این خاصیت با توجه به اثر الكترون دهندگی برمو سیانید و انتقال چگالی بار از برمو سیانید به سمت نانوخوشه قابل پیش بینی می باشد یکی دیگر از پارامترهایی که برای بررسی خصلت ییوندها استفاده می شود دو تابع تمرکز الکترونی ^{۱۳} ELF و موقعیت اربیتالهای متمرکز ELF^{۱۳} هستند. بر اساس اطلاعات کوانتومی هرگاه مقادیر ELF<0.5 و LOL<0.5 باشد، نشان مىدهد در ناحیه پیوندی الکترونها متمرکز نبوده و به سمت گونه الكترونگاتيوتر تمايل دارند كه اين موضوع ثابت مىكند ییوند نانوخوشه و برموسیانید از نوع قطبی بوده که نتایج نظریه اتم در مولکول هم را تایید می کند.

۳-۳ گرادیان چگالی کاهش یافته"(RDG)

یکی دیگر از روشهای بررسی ماهیت پیوند استفاده از نمودارهای گرادیان چگالی کاهش یافته است که بر اساس رفتار غیر کوالانسی پیوند بنا شده sign(λ_2) ρ (r) یور کوالانسی پیوند بنا شده است[۳۹]. در این نمودارها محور افقی (r) $\rho(r)$ و محور عمودی مقادیر BDG است که براساس اندیس برهم کنش غیرکوالانسی استخراج شده است. نتایج مربوط به نمودارهای RDG در شکل ۶ ارائه شده است. در این شکل نواحی که با دایره های قرمز، سبز و آبی مشخص شده مربوط به نواحی پیوند الکترو استاتیک، واندروالسی و تدافعی است. نکته قابل توجه آنست در مدل d-d بیشترین تراکم RDG در ناحیه پیوندی متمرکز بوده و نشان می دهد پیوند برمو سیانید

Localized orbital locator ^{'r} Reduced density gradient ^{'£}

09

Nanomeghyas. www.nanomeghyas.ir

با نانو خوشه در این حالت قوی تر از بقیه است. که با نتایج ترمودینامیکی هم خوانی خوبی دارد در حالیکه در مدل A-a پیوند واندروالسی بیشترین اهمیت را دارد اما ناحیه تدافعی در تمام مدلها روند یکسانی دارد. این عامل نشان می دهد که برموسیانید به خوبی جذب نانو خوشه می شود و از آن می توان برای تهیه فیلتر یا جاذب استفاده کرد. در واقع نتایج این قسمت کامل با نتایج ترمودینامیکی همخوانی دارد.

 (β) ' $(\alpha)^{\circ}$ قطبش پذیری ($\alpha)^{\circ}$ و ابرقطبش پذیری ($\beta)^{\circ}$

با استفاده از نظریه اپتیکی غیر خطی^{۱۷} (NLO) [۴۰–۴۲] ویژگی نوری سیستم مثل قطبش پذیری (α) و نخستین ابرقطبش پذیری (β) و ممان دوقطبی (μ) محاسبه شده و نتایج حاصل در جدول ۴ آورده شده است.

جدول ۴ : پارامترهای قطبش پذیری ، و ابر قطبش پذیری و ممان دو قطبی جذب برمو سیانید بر روی نانوخوشه خالص و نشاندارشده با یونهای ⁺H مدلهای جذبی ID-bl A-a تاط-D

	μ _{tot}	α	β
A-a	٧.٠٨	157/04	149/14
B-a	۳/۹۹	179/-9	TV9/9T
C-a	۲/۹۵	174/29	TONAN
D-a	۳/ ۱۳	19.0/ 18	۵۳-/۱۰
A-b	۲/۴۱	144/21	YYN/DA
B-b	٣/٨٩	۱۷۹/ ۵۰	۳۶۷/۵۳
C-b	۳/ ۳۰	۱۸۰/۴۸	የየለ/ለዓ
D-b	۴/۱۰	179/14	411/94

بررسی نتایج جدول ۴، نشان میدهد که ممان دوقطبی نانو خوشه بورنیترید با جذب برمو سیانید و یون هیدروژن افزایش می یابد که این عامل در بررسی ویژگی نوری سیستم قابل توجه است. تغییرات قطبش پذیری اندک بوده و در گستره ۱۶۷/۵۴ تا پذیری اندک بوده و در گستره ۱۹۵/۱۳۵.

Non-linear optical ¹

Electron localization function "

Polarizability)

Hyper polarizability "

a.u) A-a کمترین مقدار آن مربوط به مدل A-a (a.u) ۱۴۹/۰۲) می باشد که نشان می دهد ترکیب مورد نظر از نظر خاصیت نوری فعال بوده و از این خاصیت می توان برای شناسایی برموسیانید استفاده می شود. مدل D-a و کمترین مقدار تغییر مربوط به مدل A-a و کمترین مقدار تغییر مربوط به مدل A-a است. که با نتایج انرژی جذب همخوانی بسیار خوبی دارد. در حالی که، پارامتر ابر قطبش پذیری سیستم به مقدار قابل توجهی تغییر پیدا می کند و بیشترین مقدار ابر قطبش پذیری مربوط به مدل D-a (۵۳۰/۱۰۹.

H⁺ شکل ۲: طیف های UV-visible برای جذب برمو سیانید بر روی نانوخوشه خالص و نشاندارشده با یونهای H⁺ مدلهای جذبی D-b I-A مدلهای جذبی D-b م

قسمت برآن شدیم که طیفهای مرئی و فرابنفش این ترکیبات را با روش نظریه تابع چگالی وابسته به زمان(TD-DFT) بررسی کرده و ۲۰حالت برانگیخته را مورد بررسی قرار دهیم. نتایج حاصل در شکل ۷ و UV-visible و طیفUV-visible و حالت برانگیخته و طیفUV-visible با توجه به بررسی های قبلی ملاحظه می شود که ترکیب برموسیانید با نانوخوشه بورنیترید می تواند ویژگی نوری داشته باشد. برای همین منظور، در این

جدول ۲ ضمیمه جمع آوری شده است. براساس نتایج محاسبه شده مقدار λ_{max} برای همه مدل های جذبی در گستره ۲۰۰ تا ۲۲۰ نانومتر است این طول موج در گستره ناحیه فرابنفش است. نکته جالب توجه آنست که با وارد شدن یونهای هیدروژن در ساختار نانو خوشه بعلت افزایش قطبیت پیوند پیک های طیف -UV uv بایت افزایش قطبیت پیوند پیک های طیف -uV isble پهن تر می شود و گستره تشخیص بیشتر می-شود. بررسی نتایج نشان می دهد که مقدار λ_{max} برای شود. بررسی نتایج نشان می دهد که مقدار هستند که تمام مدلهای جذبی در انتقال $S_{28} \leftarrow S_{2}$ بیشترین شدت در در گستره ۲۰۲ تا ۱۷۳ نانومتر دارا هستند که شدت در در می موضوع هم در شناسایی برمو سیانید با استفاده از دستگاه طیف بین UV-visible مهم با استفاده از دستگاه طیف بین UV-visible مهم

نتيجهگيرى

در این پروژه، پارامتر های کوانتومی و الکتریکی، UV-visible و طیف NLO ، RDG، AIM برای جذب BrCN روی سطح $B_{12}N_{12}$ در حضور میدان یونی $^+$ H و میدان الکترواستاتیک(SEF) محاسبه شدند. نتایج حاصل نشان داد که طول پیوند در گستره شدند. تایج حاصل نشان داد که طول پیوند در گستره ۱۸۵۲ تا ۲/۶۳ انگسترم و زاویه پیوند نیز از ۸۵ تا ۱۵ درجه در تغییر است. مقایسه نتایج نشان می دهد که کوتاهترین فاصله پیوند مربوط به مدل D-b و

Nanomeghyas.ir

بیشترین طول پیوند نیز مربوط به مدل A-A می باشد. روند تغییرات انرژی جذب، پارامترهای ترمودینامیکی و ممان دو قطبی در مدلهای جذبی d و D-b>C-b>B - -S-- -S-- -S--D-o-D-od و A-b و A-a-s-- -S-- -A-a و Seliتومی سیستم نشان داد که در اثر فرایند جذب و نشاندار کردن نانوخوشه انرژی گاف کاهش چشم گیری داشته که نشان میدهد، رسانایی نانوخوشه افزایش می یابد که این عامل در استفاده از نانوخوشه به عنوان جسگر این ترکیب در محیط زیست از اهمیت زیادی می دهد با افزایش تعداد یونهای هیدروژن تعداد انتقالات الکترونی افزایش یافته و برهم کنش در ناحیه همو بیشتر از لومو است. نتایج محاسبه شده پارامترهای

AIM در تمام مدلهای نشان داد که پیوند بین نانوخوشه B₁₂N₁₂ و BrCN از نوع الکترواستاتیک قطبی است، که این خاصیت با توجه به اثر الکترون دهندگی برمو سیانید و انتقال چگالی بار از برمو سیانید به سمت نانوخوشه قابل پیش بینی است. نتایج این بررسی ثابت می کند که نانوخوشه بور نیترید در حضور میدان الکتریکی خارجی و میدان یونی هیدروژن می تواند جاذب و حسگر بسیارخوبی برای ماده سمی برمو سیانید در محیط زیست باشد.

اطلاعات تکمیلی: اطلاعات تکمیلی در جدولهای S1, S2 در ضمیمه آورده شده است.

Soltani. N. Ahmadian, [9] A. A. Tazikeh Amirazami, A. Masoodi, E. Varasteh Lemeski, Ali Moradi, "Theoretical investigation of OCN⁻ adsorption onto boron nitride nanotubes, Appl. Surf. Sci. 261, 262–267, 2012.

[10] M. Bezi Javan, A. Soltani, E.Tazikeh Lemeski, A.A. Ahmadi, A. S. Moazen Rad, "Interaction of B12N12 nano-cage with cysteine through various functionalities : a DFT study, Superlati. Microst. 100, 24–37,2016.

[11] A. Abbasi, "Exploration of the adsorption of caffeine molecule on the TiO₂ nanostructures: A density functional theory study. J. Nanoanalysis.; 5(4), 255-276, 2018.

[12] K. Bakhshi, M. Amirzehni, L. Garadaghi & A. Khani Density Functional Theory Studying for Nicotine Adsorption on Nanotube to Predict Thermodynamic Properties, Fullerenes, Nanotubes and Carbon Nanostructures, Superlattices and Microstructures, 75–76, 716-724, 2014.

[13] K. Seino, W. G. Schmidt, M. Preuss, F. Bechstedt, "Uracil Adsorbed on Si(001): Structure and Energetics., Physical Chemistry 107 (21), 5031–5035, 2003

[14] R. Majidi, A.R. Karami, "Aromatic amino acids adsorption on graphene: a density functional theory study. Struct. Chem. 26, 5–10, 2015.

[15] J. M. Galicia Hernández, G.H. Cocoletzi, E.C. Anota, "DFT studies of the phenol adsorption on boron nitride sheets. J. Mol. Model. 18, 137–144, 2012.

[16] A. Shokuhi Rad, K. Ayub, "Adsorption of pyrrole on $Al_{12}N_{12}$, Al12P12, B12N12, and $B_{12}P_{12}$ fullerenelike nano-cages; a first principles study, Vacuum, 131, 135–141, 2016.

[17] A. Shokuhi Rad, K. Ayub, "Enhancement in hydrogen molecule adsorption on B12N12 nano-cluster by

- [1] J. M. Matxain, L.A. Eriksson, J.M. Mercero, X. Lopez, M. Piris, J.M. Ugalde, J. Poater, E. Matito, M. Sola, "New Solids Based on B₁₂N₁₂ Fullerenes, J. Phys. Chem. C 111, 13354–13360,2007.
- [2] A. Soltani, M. Bezi Javan, "Carbon monoxide interactions with pure and doped $B_{11}XN_{12}$ (X = Mg, Ge, Ga) nano-clusters: a theoretical study, RSC Adv. 5, 90621–90631, 2015.
- [3] A. V. Pokropivny, "Structure of the boron nitride E-phase: diamond lattice of B12N12 fullerenes, Diam. Relat. Mater. 15, 1492–1495, 2006.
- [4] T. Oku, A. Nishiwaki, I. Narita, "Formation and atomic structure of B12N12 nanocage clusters studied by mass spectrometry and cluster calculation, Sci. Technol. Adv. Mater. 5, 635–638, 2005.
- [5] D. Farmanzadeh, S. Ghazanfary, BNNTs under the influence of external electric field as potential new drug delivery vehicle of Glu, Lys, Gly and Ser amino acids: a first principles ,study, Appl. Surf. Sci. 320, 391–399, 2014.
- [6] M.D. Ganji, H. Yazdani, A. Mirnejad,
 "B₃₆N₃₆ fullerene-like nanocages: A novel material for drug delivery, Physica E 42, 2184–2189, 2010.
- J. Beheshtian, A. Ahmadi Peyghan, Z. Bagheri, "Detection of phosgene by Sc-doped BN nanotubes: a DFT study, Sens. Actuators, B, 171–172, 846–852, 2012.

[8] A. Soltani, A. Varasteh Moradi, M. Bahari, A. Masoodi, S. Shojaee, "Computational investigation of the electronic and structural properties of CN radical on the pristine and Al-doped (6, 0) BN nanotubes, Physica B. 430, 20–26, 2013.

decoration: A comprehensive DFT study, Solid. State. Sci. 69, 22–30, 2017.

[27] D. Farmanzadeh, N. Askari Ardehjani, "Theoretical study of ozone adsorption on the surface of Fe, Co and Ni doped boron nitride nanosheets, Applied Sur. Sci. 444, 642–649,2018.

[28] K. Kalateh, A. Abdolmanafi, "Study of $B_{12}N_{12}$ and $AlB_{11}N_{12}$ fullerene as H2S absorbent and sensor by computational method, Inter. J. New Chem. 2 (5), 172– 178, 2015.

[29] E. Vessally, R. Moladoust, S. M. Mousavi-Khoshdel, M. D. Esrafili, A. Hosseiniane, L. Edjlalif, "The ClCN adsorption on the pristine and Al-doped boron nitride nanosheet, nanocage, and nanocone: Density functional studies, Thin. Solid. Films. 645, 363–369, 2018.

[30] T. Movlarooy, M. Amiri Fadradi, "Adsorption of cyanogen chloride on the surface of boron nitride nanotubes for CNCl sensing, Physics. Lett. 700, 7–14, 2018.

[31] M. J. Frisch, et al., Gaussian 09, Revision D.01, 2009.

[32] M. Rezaei Sameti, B. Amirian, "A Quantum, NBO, RDG study the interaction of cadmium ion with the pristine, C, P and C&P doped (4,4) armchair boron nitride nanotube (BNNTs), Asian J. Nanosci. Mat. 1(4), 262–270, 2018.

[33] M. Rezaei-Sameti, P. Zarei, "NBO, AIM, HOMO–LUMO and thermodynamic investigation of the nitrate ion adsorption on the surface of pristine, Al and Ga doped BNNTs: A DFT study. Adsorption. 24, 757–767, 2018.

[34] M. Rakhshi, M. Mohsennia, H. Rasa, M. Rezaei Sameti, "First-principle study of ammonia molecules adsorption on boron nitride nanotubes in presence and absence of static electric field and ion field, Vacuum, 155,456–464, 2018.

[35] M. Rezaei-Sameti, F. Zanganeh, "A computational study of adsorption H_2S gas on the surface of the pristine, Al&P-doped

decoration of nickel, International J. Hydrogen. Energy, 41(47), 22182–22191, 2016.

[18] J. Beheshtian, Z. Bagheri, M. Kamfiroozi, A. Ahmadi, "Toxic CO detection by B12N12 nanocluster, Microelectronics. J. 42(12), 1400–1403, 2011.

[19] A. Shokuhi Rad, K. Ayub, "A comparative density functional theory study of guanine chemisorption on $Al_{12}N_{12}$, $Al_{12}P_{12}$, $B_{12}N_{12}$, and $B_{12}P_{12}$ nano-cages, J. Alloys and Comp. 672, 161–169, 2016.

[20] M. D. Esrafili, R. Nurazar, "A density functional theory study on the adsorption and decomposition of methanol on $B_{12}N_{12}$ fullerene-like nanocage, Superlat. Microstr. 67,54–60, 2014.

[21] J. Beheshtian, M. Kamfiroozi, Z. Bagheri, A. Ahmadi Peyghan, " $B_{12}N_{12}$ nano-cage as potential sensor for NO₂ detection, Chinese J. Chem. Physics, 25,6–65, 2012.

[22] A. Soltani, M. T. Baei, E. Tazikeh Lemeski, A. A. Pahlevani, "The study of SCN⁻ adsorption on B12N12 and B16N16 nano-cages., Superlat. Microstr. 75, 716– 724, 2014.

[23] E. Shakerzadeh, "A DFT study on the formaldehyde (H_2CO and $(H_2CO)_2$) monitoring using pristine $B_{12}N_{12}$ nanocluster, Physica E.78, 1–9, 2016.

[24] N. Abdolahi, M. Aghaei, A. Soltani, Z. Azmoodeh, H. Balakheyli, F.Heidari, "Adsorption of Celecoxib on B12N12 fullerene: Spectroscopic and DFT/TD-DFT study, Spectrochimica. Acta Part A: Molecular and Biomolecular Spectroscopy, 204, 348–353, 2018

[25] M. D. Esrafili, R. Nurazar, "A density functional theory study on the adsorption and decomposition of methanol on $B_{12}N_{12}$ fullerene-like nanocage, Superlat. Microstr. 67, 54–60,2014.

[26] A. Shokuhi Rad, K. Ayub, " O_3 and SO_2 sensing concept on extended surface of $B_{12}N_{12}$ nanocages modified by Nickel

[40] S. Schmitt-Rink, D.S. Chemla & D.A.B. Miller Linear and nonlinear optical properties of semiconductor quantum wells, Adv. Physics, 38, 89–188, 1998.

[41] N. Adailton, A. P. Castroa Francisco, R. Osóriobc Ricardo, B. Ternaviskd Hamilton, N. C.Valverdead, B. Baseia, "Theoretical investigations of nonlinear optical properties of two crystalline acetamides structures including polarization effects of their environment, Chem. Phys. Lett. 681,110–123, 2017

[42] R. Kumar, A. Kumar, V. Deval, A. Gupt, P. Tandon, P.S. Patil, P. Deshmukh, D. Chaturvedi, J. G. Watve, "Molecular structure, spectroscopic (FT-IR, FT Raman, UV, NMR and THz) investigation and hyperpolarizability studies of 3-(2-Chloro-6-fluorophenyl)-1-(2-thienyl) prop-2-en-1-one, Mole. Str. 1129, 292–304, 2017.

armchair and zigzag BNNTs, Sulfur. Chem. 38, 384–400, 2017.

[36] M. Rezaei-Sameti, S. Yaghoobi, "Theoretical study of adsorption of CO gas on pristine and AsGa-doped (4, 4) armchair models of BPNTs, Comp. Condensed Matter, 3, 21–29, 2015.

[37] N.M. O'boyle, A. L.Tenderholt, K. M. Langer, "A library for package-independent computational chemistry algorithms. J. Comput. Chem. 29, 839–845, 2008.

[38] R.F.W. Bader, "Atoms in Molecules: A Quantum Theory, Oxford University Press, Oxford, U.K., 1990.

[39] Y.T. Sun, P.Y. Huang, C. H. Lin, K. R. Lee, M. T. Lee, "Studying antibiotic-Membrane interactions via X-Ray diffraction and fluorescence microscopy, Biophys. J. 110, 414–418, 2015.

اطلاعات پيوست

جدولS1 : اثر میدان الکتریکی بر روی پارامترهای کوانتومی جذب برمو سیانید بر روی نانوخوشه خالص و نشاندارشده با یونهای ++ مدلهای جذبی A-a تا D-b تا

	SEF (Z-0.005)	SEF (Z-0.01)	SEF (Z-0.02)	SEF (Z-0.04)	SEF (Z-0.05)	SEF (Z-0.06)	SEF (Z-0.07)
	25 55	- 35 - 35	A-a	8 %	S 32	- 164 - 164 -	S - 32
ERONO(W)	1/10	-9/VF	-9/194	-////	-//11	-1/14	-V/XY
ELUNO (eV)	+/٩٨	•/٩۴	+/&V	-+/۵Y	-1/14	-1/77	-7/29
Egap(sV)	1+/\\\	1+/11	1./.4	WYY	N/4d	F/19F	D/FY
			A-b	5			
EROMO(#V)	-%/94	-//AY	-8/61	-7/74	-7/٣١	-\$/9Y	-5194
ELUND (*V)	-+/7V	-+/%٩	-+/٣+	۵۳/۰-	-+/++	-+/٩۴	-1/44
E _{zap(sV)}	NFF	NDA	NTT	WYY	۶/۹۳	۶/+۳	۵/+V
			B-a-	700			
EROMO(#V)	-17/09.	-17/49	-17/71	-11/81	-11/22	-11/+4	-1+/4+
ELUMO (N)	-Y%AR	-4/8-1	-8181	-7/17	-1/19	-4/75	-0/195
Egap(eV)	9/++	NAA	Nag	Y/A9	W/11	5/49	6/46
	10-10-10		B-b	0			
EROMO(#V)	-14/20	-17/97	-17/75	-11/08	->>/>A	-1+/Af	-1+/4+
ELUNO (eV)	-٣/۵١	-1/01	-1/01	-7/24	-1/1+	-f/V.	-0/11
Egap(sv)	9/10	9/11	A/AY	W/9.4	W/+9,	8/14	6/19
			C-8	200			
EROMO(#V)	-18/01	-18/21	-18/01	-18/+2	-18/84	-10/14	-11/99
ELUND (eV)	-Y/+Y	-V/+V	-V/٣١	-N•۵	-N/04	-9/14	-9/174
E _{zap(eV)}	૧/૧૧	٩/۴۲	٩/١٩	٧/٩٩	WN	5/1A	4/5v
			C-b7	00			
EROMO(#V)	-18/48	-18/41	-18/14	-10/01	-10/71	-14/91	-14/54
ELUMO (eV)	-8/75	-8/VF	-5/22	-7/21	-V/X5	-1/49	-9/11
E _{gap(sV)}	9/174	۹/۶۵	2/42	A/1A	W/YY	5/44	a/a4
			D-a				
ERONO(N)	-Y•/XY	-Y•/YA	-++/45	-19/7.	-19/79	-11/94	-11/0.
ELUNCO (eV)	-18/18	-17/17	-17/71	-14/88	-11/19	-11/Vf	-11/17
Egap(sV)	N/Y1	NFT	NYY	8/99	8/11	6/79	4/75
			D-b	5			
EROMO(N)	-**/**	-19/21	-19/4.	-12/88	-11/75	-18/1V	-14/14
ELUMO (eV)	-11/10	-11/24	-17/+A	-14/77	-17/70	-11/10	-15/17
E _{zap(eV)}	A/Ya	NYY	WYY	2/44	۴/۵۹	٣/٩.١	۲/۴۵

جدول S2: انتقالات الکترونی بین حالتهای برانگیخته برای جذب برمو سیانید بر روی نانوخوشه خالص و نشاندارشده با یونهای * H مدلهای جذبی A-a تا D-b تا A-a

Nanomeghyas. www.nanomeghyas.ir

Model	Exited	Wave	Exited	Configuration composites	1
		Function	energy		
		(nm)	(eV)		
A-a	$S_0 \rightarrow S_{15}$	173.61	7.1415	$0.05(H-5\rightarrow L+1)+0.04(H-5\rightarrow L+2)+0.05(H-4\rightarrow L)+0.09(H-$	0.0669
				$4 \rightarrow L+3)+0.03(H-3 \rightarrow L+1)+0.02(H-3 \rightarrow L+2)+0.17(H-1)$	
				2→L+4)+0.02(H-1→L)+0.07(H-1→L+4)+0.16(H-	
				$1 {\rightarrow} L {+} 5) {+} 0.03 (H {-} 1 {\rightarrow} L {+} 11) {+} 0.02 (H {\rightarrow} L {+} 5) {+} 0.02 (H {\rightarrow} L {+} 10)$	
	S ₀ S ₂₅	162.68	7.6211	$0.02(H-7 \rightarrow L+8)+0.09(H-5 \rightarrow L+1)+0.02(H-5 \rightarrow L+2)+0.02(H-5 \rightarrow L$	0.0607
				4→L+2)+0.08(H-3→L+1)+0.07(H-3→L+2)+0.02(H-	
				2→L+5)+0.25(H-1→L+4)+0.02(H→L+10)	
B-s	S ₀ S ₂₅	166.85	7.4309	0.05(H-6→L)+0.03 (H-6→ L+3)+0.1(H-5→ L)+0.16(H-	0.0725
				5→L+3)+0.42(H-4→L+5)+0.04(H-3→L)+0.03(H-	
				3→L+4)+0.05(H-2→L)+0.03(H-2→L+1)+0.02(H-	
				$2 \rightarrow L+3)+0.04(H-1 \rightarrow L+6)+0.04(H-1 \rightarrow L+7)+0.03(H \rightarrow L+6)$	
	SS;	210.28	5.8960	0.07(H-3→L+1)+0.71(H→L+1)+0.08 (H→L+2)	0.0416
<u> </u>	Sr	163.60	7.5787	0.08/H-7→L)+0.05/H-7→ L+1)+0.03/H -6→L)+0.02 (H-	0.0820
C-a				6→L+1)+0.06(H-6→L+3) +0.02(H-6→L+4)+0.32(H-	
				5→L+2)+0.06(H-3→L+5)+0.02(H-2→L+6)+0.05(H-	
				2→L+8)+0.07(H-1→L)	
	Se	163.17	7.5987	0 12/H-7→L)+0 2/H-6→L+3)+0 03(H-6→L+4)+0 07/H-	0.0840
				5→L+2)+0.09(H-4→L+2)+0.17(H-3→L+5)+0.04(H-	
				3→L+7)+0.05(H-2→L+6)	
	Se. 51	174.17	7.1187	$0.03(H-1)\rightarrow L+1)+0.3(H-9\rightarrow L) +0.03(H-9\rightarrow L+1)+0.17$	0.0696
D-a				$(H-9 \rightarrow L+2) + 0.11(H-8 \rightarrow L) + 0.05(H-5 \rightarrow L) + 0.02(H-5)$	
				5→L+2) ±0.06 (H-4→L+11)	
	Se. S.	221.46	5 5985	$0.68(H-2\rightarrow L)+0.1(H-2\rightarrow L+1)+0.10(H-2\rightarrow L+2)$ +0.02(H-	0.0360
	-,,			l→L)	
				/	

Nanomeghyas.ir

A-b	S _{0→} S ₂₀	169.88	7.2982	0.02(H-14→L+2)+0.02(H-11→ L+1) +0.11(H-	0.02140
				$8{\rightarrow}L{+}1){+}0.05(H{-}7{\rightarrow}L{+}1){+}0.25(H{-}6{\rightarrow}L{+}2){+}0.02(H{-}$	
				$5 \rightarrow L+1)+0.02(H-5 \rightarrow L+3)+0.16(H-4 \rightarrow L+1)+0.06(H-1)+0.0$	
				$3\rightarrow$ L)+0.03(H-2 \rightarrow L+5)+0.02(H-2 \rightarrow L+6)	
	S ₀ S ₂₅	173.29	7.1548	$0.03(H-6\rightarrow L+2)+0.02(H-5\rightarrow L+1)+0.02(H-5\rightarrow L+3)+0.02(H-5\rightarrow L+3)+0.02$	0.0404
				4→L+1)+0.02(H-3→L)+0.02(H-3→L+4)+0.07(H-	
				$3 \rightarrow L+5)+0.04(H-2 \rightarrow L+4)+0.03(H-2 \rightarrow L+6)+0.2(H-6)+0.2(H$	
				$1 \rightarrow L+4$)+0.02(H-1 $\rightarrow L+5$)+0.04(H-1 $\rightarrow L+7$)+0.03(H-	
				$1 \rightarrow L+8)+0.2(H \rightarrow L+3)+0.02(H \rightarrow L+9)$	
B-b	S0-S25	170.51	7.2712	0.02(H-5→L+3)+0.05 (H-4→ L+1)+0.12(H-4→	0.0555
				L+4)+0.02(H-2→L+2)+0.13(H-2→L+3)+0.22(H-	
				$2 \rightarrow L+6)+0.02(H-2 \rightarrow L+13)+0.02(H-1 \rightarrow L+2)+0.13(H-1)+0.02(H-1)+0.$	
				$1\rightarrow$ L+3)+0.03(H \rightarrow L+9)	
	S ₀ S ₂₂	172.63	7.1822	0.28(H-4→L+5)+ 0.01(H-3→L+3) +0.03(H-	0.0309
				$3 \rightarrow L+5)+0.06(H-2 \rightarrow L+1)+0.02(H-2 \rightarrow L+4)+0.11(H-6)$	
				$2 \rightarrow L+10)+0.07(H-1 \rightarrow L+10)+0.03(H \rightarrow L+6)+0.15(H \rightarrow L+7)$	
	S ₀ S ₂₅	163.00	7.6063	0.04(H-4→L+2)+0.03(H-3→ L)+0.04(H -3→L+3)+0.03 (H-	0.0661
C-b				$3 \rightarrow L+4)+0.11(H-3 \rightarrow L+5) +0.08(H-2 \rightarrow L)+0.04(H-2)+0.04$	
				$1\rightarrow$ L+8)+0.24(H \rightarrow L+8)	
	S ₀ S ₂₅	166.45	7.4487	0.02(H-5→L+2)+0.12(H-3→L+3)+0.09(H-3→L+5)+0.06(H-	0.0666
				2→L+2)+0.08(H-2→L+3)+0.04(H-2→L+6)+0.02(H-	
				$2 \rightarrow L^{+7})^{+0.05(H-1 \rightarrow L)+0.02(H-1 \rightarrow L^{+6})+0.13(H-1 \rightarrow L^{+7})}$	
	S ₀ S ₂₁	176.39	7.0290	0.02(H-8→L+1)+0.02(H-5→L+2) +0.08(H-3→ L+1)+ 0.37	0.1089
D-b				$(\text{H-1}{\rightarrow}\text{L}{}^{+4}) \qquad \text{+0.19}(\text{H-1}{\rightarrow}\text{L}{}^{+5}) \qquad \text{+0.06}(\text{H}{\rightarrow} \qquad \text{L}{}^{+3})$	
				+0.05(H→L+8)	
	S ₀ S ₂₅	171.66	7.2227	$0.16(H-3\rightarrow L+1)+0.13(H-3\rightarrow L+2)+0.03(H-3\rightarrow L+4)$	0.0553
				+0.02(H-4→L+3)+0.02(H-3→L+1)+0.04(H-	
				3→L+11)+0.18(H-	
				$1 \rightarrow L+5$)+0.05(H $\rightarrow L+3$)+0.04(H $\rightarrow L+7$)+0.12(H $\rightarrow L+8$)	

Investigation of electrostatic and hydrogen ionic (H⁺) field on the structural and quantum parameters of interaction cyanogen bromide (BrCN) with B₁₂N₁₂ nanocage, by density functional theory

Rezvan Alvand¹ Mahdi Rezaei-Sameti²* Reze Regjaie Khorasani¹

Department of Chemistry, Faculty of Science, Islamic Azad University, North Tehran Branch, Tehran, Iran
 2- Department of Applied Chemistry, Faculty of Science, Malayer University, Malayer, Iran

Abstract

In this work, the effects of static electric field (SEF) and ion field (hydrogen ions (nH^+) on the interaction of cyanogen bromide (BrCN) with boron nitride nanocage (B₁₂N₁₂) using density function theory (DFT) and time-dependent density function theory (TD-DFT) have been investigated. Using optimized configurations the parameters of structural, electrical, quantum and thermodynamic, adsorption energy, quantum theory of atoms in molecules (QTAIM), reduced density gradient (RDG), nonlinear optical properties (NLO), ultraviolet-visible spectra (UV-Vis) are calculated. The calculated results indicate that the amount of adsorption energy, enthalpy (Δ H) and Gibbs free energy (Δ G) are negative for all adsorption states and the adsorption process of cyanogen bromide on the surface of B₁₂N₁₂ nanocage is thermodynamically exothermic and spontaneous. With increasing electrical field strength from SEF_{z-0.005} a.u to SEF_{z-0.07} a.u and H⁺ ionic field, the adsorption energy increase and gap energy between the HOMO and LUMO orbitals significantly reduce, so the sensitivity of the nanocage to adsorb and detect of toxic cyanogen bromide increase.

Keywords: Boron Nitride Nano Cluster, Cyanogen bromide Sensor, Electric and ionic Field, Density Function Theory, Structural and quantum parameters