تحرک الکترونی محدود با استفاده از ناخالصی در یک سیم کوانتومی نیم‌رسانا

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه فیزیک، دانشکده علوم پایه، دانشگاه بوعلی سینا، همدان

چکیده

: پیشرفت‌های چشمگیر اخیر در فناوری نیم­ رساناها، به عنوان مثال، توسعه برآرایی پرتومولکولی، امکان تولید ساختارهای چاه کوانتومی را که در آن‌ها الکترون‌ها محدود به حرکت در یک یا دو بعد شده‌اند، فراهم ساخته است. حرکت الکترون ها در چنین ساختارهای نیمرسانا محدود شده، منجر به آثار کوانتش اندازه شده است. در این پژوهش، تحرک محدود با پراکندگی ناخالصی  یونیده یا توزیع یکنواخت ناخالصی دور برای یک دستگاه نیم­ رسانا یک بعدی مانند نانوسیم گالیم آرسناید و ایندیم آرسناید نوع n مورد بررسی قرار داده که ابتدا محاسبه و سپس رسم کرده ایم. اثر پارامترهای فیزیکی مربوطه متفاوت از قبیل دما، شعاع و چگالی ناخالصی بر روی تحرک پذیری بررسی شده است. نتایج عددی نشان می دهد که تحرک محدود به دلیل پراکندگی ناخالصی پس زمینه با افزایش دما، یکنواخت و به آرامی افزایش می یابد، در حالی که  تحرک محدود به دلیل پراکندگی ناخالصی های دور به سرعت با دما افزایش می یابد و برای نانو سیم InAs به شعاع nm8 برابر cm2/Vs 104 است. همچنین نشان داده شده است که تحرک برای هر دو ناخالصی با افزایش شعاع سیم کاهش می­ یابد و با افزایش چگالی تحرک افزایش می­ یابد. نتایج به دست آمده در این پژوهش با داده های تجربی و نظری اخیر مطابقت دارد.

کلیدواژه‌ها


عنوان مقاله [English]

IMPURITY-LIMITED ELECTRON MOBILITY IN A SEMICONDUCTOR QUATUM WIRE

نویسندگان [English]

  • Ghassem Ansaripour
  • Sara Yousefi
Department of Physics, Bu-Ali Sina University, Hamedan
چکیده [English]

Abstract: Recent astonishing progresses in crystal growth technology, i.e. molecular beam epitaxy, have provided the possibility of fabricating quantum well structures in which electrons confined to move in one or two dimensions. The motion of electrons in such semiconducting structures is confined and leads to size quantization effects. In this research, we investigated the limited mobility by ionized impurity scattering or from the uniform distribution of remote impurity for a one-dimensional semiconductor device such as n-type gallium arsenide and Indium Arsenide nanowire, which first calculated and then plotted. The effect of various relevant physical parameters such as temperature and radius and impurity density on mobility has been investigated. Numerical results show that limited mobility increases uniformly and slowly with increasing temperature due to background impurity scattering, while limited mobility increases rapidly with temperature due to scattering of remote impurities. It has also been shown that the mobility for both impurities decreases with increasing wire radius and with increasing density, mobility increases. The results obtained from this investigation are in agreement to recent experimental and theoretical data.

کلیدواژه‌ها [English]

  • Quantum wire
  • Mobility
  • Ionized impurity
  • Remote impurity
  • Indium arsenide
[1] V. Mourik, K. Zuo, S. M. Frolov, S. R. Lissard, E. P. A. M. Bakkers and L. P. Kouwenhoven, "Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices" Science, 336, 1003, 2012.
[2] P. Krogstrup, N. L. B. Ziino, W. Chang, S. M. Albrecht, M. H. Madsen, E. Johnson, J. Nygård, C. M. Marcus, and T. S. Jespersen, "Epitaxy of semiconductor–superconductor nanowires", Nature  Material, 14, 400, 2015.
[3] J. C. E. Saldaña, A. Vekris, G. Steffensen, R. Žitko, P. Krogstrup, J. Paaske, K. G. Rasmussen, and J. Nygård, "Supercurrent in a double quantum dot", Physical review letter, 121, 257701, 2018.
[4] S. Vaitiekenas, G. W. Winkler, B. van Heck, T. Karzig, M.-T. Deng, K. Flensberg, L. I. Glazman, C. Nayak, P. Krogstrup, R. M. Lutchyn, et al., "Flux-induced topological superconductivity in full-shell nanowires", Science 367, 3392, 2020.

[5] S. Vaitiekenas, Y. Liu, P. Krogstrup, and C. M. Marcus, "Zero-bias peaks at zero magnetic field in ferromagnetic hybrid nanowires", Nature physics, 17, 43, 2021.

[6] J. Shabani, M. Kjaergaard, H. J. Suominen, Y. Kim, F. Nichele, K. Pakrouski, T. Stankevic, R. M. Lutchyn, P. Krogstrup, R. Feidenhans’l, et al., "Two-dimensional epitaxial superconductor-semiconductor heterostructures: A platform for topological superconducting networks", Physical review B 93, 155402, 2016.

 [7] A. M. Whiticar, A. Fornieri, E. C. T. O’Farrell, A. C. C. Drachmann, T. Wang, C. Thomas, S. Gronin, R. Kallaher, G. C. Gardner, M. J. Manfra, et al., Nature Communication, 11, 1, 2020.

[8] J. Alicea, Y. Oreg, G. Refael, F. von Oppen, and M. P. A. Fisher, "Non-Abelian statistics and topological quantum information processing in 1D wire networks", Nature physics, 7, 412, 2011.

[9] P. Barthelemy and L. M. K. Vandersypen, Annual physics, 525, 808, 2013.
[10] A. Fornieri, A. M. Whiticar, F. Setiawan, E. Portolés, A. C. C. Drachmann, A. Keselman, S. Gronin, C. Thomas, T. Wang, R. Kallaher, et al., "Evidence of topological superconductivity in planar Josephson junctions Nature", 569, 89, 2019.
 [11] C. G. L. Bøttcher, F. Nichele, M. Kjaergaard, H. J. Suominen, J. Shabani, C. J. Palmstrøm, and C. M. Marcus, "Superconducting, insulating and anomalous metallic regimes in a gated two-dimensional semiconductor–superconductor array", Nature physics, 14, 1138, 2018.

[12] S. R. Plissard, I. van Weperen, D. Car, M. A. Verheijen, G. W. G. Immink, J. Kammhuber, L. J. Cornelissen, D. B. Szombati, A. Geresdi, S. M. Frolov, et al., "Formation and electronic properties of InSb nanocrosses", Nature Nanotechnology, 8, 859, 2013.  

[13] S. Gazibegovic, D. Car, H. Zhang, S. C. Balk, J. A. Logan, M. W. A. de Moor, M. C. Cassidy, R. Schmits, D. Xu, G. Wang, et al., "Epitaxy of advanced nanowire quantum devices", Nature 548, 434, 2017.  

[14] F. Krizek, T. Kanne, D. Razmadze, E. Johnson, J. Nygård, C. M. Marcus, and P. Krogstrup, "Growth of InAs wurtzite nanocrosses from hexagonal and cubic basis", Nano Letter 17, 6090, 2017.
[15] S. A. Khan, C. Lampadaris, A. Cui, L. Stampfer, Y. Liu, S. J. Pauka, M. E. Cachaza, E. M. Fiordaliso, J.-H. Kang, S. Korneychuk, et al., "Highly transparent gatable superconducting shadow junctions ACS Nano 14, 14605, 2020.
 [16] F. Krizek, Z. Kašpar, A. Vetushka, D. Kriegner, E. M. Fiordaliso, J. Michalicka, O. Man, J. Zubáč, M. Brajer, V. A. Hills, K. W. Edmonds, P. Wadley, R. P. Campion, K. Olejník, T. Jungwirth, and V. Novák," Molecular beam epitaxy of CuMnAs Phyisical Review Materials 4, 014409, 2020.
[17] P. Aseev, G. Wang, L. Binci, A. Singh, S. MartíSánchez, M. Botifoll, L. J. Stek, A. Bordin, J. D. Watson, F. Boekhout, et al., Ballistic InSb nanowires and networks via metal-sown selective area growth", Nano Letter 19, 9102, 2019.
[18] M. Friedl, K. Cerveny, C. Huang, D. Dede, M. Samani, M. O. Hill, N. Morgan, W. Kim, L. Güniat, J. SeguraRuiz, et al., Nano Lett. 20, 3577 (2020), ISSN 1530-6984. Remote Doping of Scalable Nanowire Branches
[19] G. Ansaripour, B. Shayeghy, "The effect of environment carrier transport on the carrier in semiconducting nanowires”, International journal for light and electron optics, 127, 9673-9678, 2016.
 [20] G. S. Kliros, "Analytical modeling of uniaxial strain effects on the performance of double-gate graphene nanoribbon field-effect transistors", Nanoscale research letters,  9, 65, 2014.
[21] G. Ansaripour, G. Braithwaite, M. Myronov, O.A. Mironov, E.H.C. Parker, T.E. Whall," Energy loss rates of two-dimensional hole gases in inverted Si/SiGe heterostructures”, Applied physics letters, 76, 1140-1142, 2000
[22] G. Ansaripour, "Mobility of holes in a Si/SiGe metal oxide semiconductor field effect transistor", Thin solid films, 518, 19, 6105-6108, 2010.

[23] S. Adachi, Electronic and Photonic Materials Springer, Boston, MA, Boston, MA, USA, 2006, 735–752,

 [24] R. Lutchyn, E. Bakkers, L. Kouwenhoven, P. Krogstrup, C. Marcus, and Y. Oreg, Nature review materials 3, 52, 2018.
[25] C. Thomas, A. T. Hatke, A. Tuaz, R. Kallaher, T. Wu,1 T. Wang, R. E. Diaz, G. C. Gardner, M. A. Capano, and M. J. Manfra," High mobility InAs 2DEGs on GaSb substrates: A platform for mesoscopic quantum transport", Physical review materials 2, 104602, 2018.
[26] M. P. Persson, H. Mera, Y.-M. Niquet, C. Deleru, M. Diarra, "Charged impurity scattering and mobility gated silicon nanowires", Physical review B, 82, 114318, 2010.
 [27] N. Gupta, Y. Song, G.W. Holloway, U. Sinha, C. M. Haapamak, R.R. LaPierre and J. Baugh, Temperature-dependent electron mobility in InAs nanowires", Nanotechnology,24, 225202, 2013.
[28] S. A. Daeh, "Electron transport in indium arsenide nanowires", Semiconductor science technology 25, 024004, 2010.
[29]  M. V. Fern´andez-Serra, Ch. Adessi, and X. Blase, Physical review letters 96, 166805, 2006.
[30] T. Markussen, R. Rurali, A.-P. Jauho, and M. Brandbyge, Physical review letters 99, 076803 2007.
 [31] Y. M. Niquet, L. Genovese, C. Delerue and T. Deutsch, Physical review B 81, 161301,  2010.
[33] S.M. Sze, Semiconductor devices, physics and technology, John Wiley & Sons, Inc.