سنتز و بهینه‌سازی عملکرد جوهرنانوذرات Cu2ZnSnS4 برپایه حلال غیرقطبی به عنوان لایه انتقال‌دهنده حفره در سلول‌های خورشیدی پروسکایتی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 پژوهشکده علوم و فناوری نانو، دانشگاه صنعتی شریف، تهران، ایران

2 دانشکده فیزیک، دانشگاه صنعتی شریف، تهران، ایران

3 هیأت علمی/دانشکده فیزیک دانشگاه صنعتی شریف تهران

چکیده

در سلول خورشیدی پروسکایتی، لایه  جاذب  بین لایه­ های انتقال­ دهنده الکترون (ETM) و حفره (HTM) قرار می­ گیرد. لایه­های ETM و HTM، نقش مهمی در عملکرد فتوولتاییکی ایفا می­ کنند. تاکنون بهترین بازدهی با استفاده از spiro-OMeTAD به عنوان HTM حاصل شده است. اما قیمت بالا و فرایند سنتز پیچیده ممکن است که کاربرد انبوه آن را محدود نماید. یک نیم رسانا معدنی مثل Cu2ZnSnS4(CZTS)، بدلیل تحرک­ پذیری بالا، پایداری مناسب، قابلیت سنتز و لایه­نشانی به روش محلول ساده و ارزان، می­ تواند جایگزین­ امیدبخشی باشد. در این مطالعه، خمیر کربنی دما پایین به همراه نانوجوهر CZTS برای انتقال و جمع­ آوری حامل­ های حفره استفاده شد. همچنین، از ترکیب CIS (CuInS2) به عنوان HTM مرجع استفاده شد. نانوذرات CZTS سنتز شده به روش گرمادهی تدریجی دارای فاز بلوری ورتزیت و یک ترکیب غنی از Zn هستند. حضور لایه HTM در فصل مشترک پروسکایت/کربن، اساساً تأثیر بسزایی بر روی  بهبود عملکرد فتوولتاییکی دارد. سرعت چرخش و تعداد دفعات لایه­نشانی نانوجوهر به روش پوشش ­دهی چرخشی مورد بررسی قرار گرفت. در حالت دو بار ترسیب نانوجوهر، حداکثر بازدهی 12/61، 13/38، 10/74 و 11/40 %  بترتیب برای سرعت چرخش 3000 ، 4000 ، 5000 و rpm 6000 بدست آمد. افزایش تعداد لایه­های HTM باعث کاهش بازدهی و چگالی جریان می­شود. شرایط بهینه برای سرعت چرخش rpm4000 و دو بار ترسیب جوهر، بدست آمد. افزاره مبتنی برCIS به عنوان مرجع، بازدهی 5/15% را نشان داد. عملکرد بهتر افزاره مبتنی بر CIS در مقایسه با CZTS، تحت تأثیر نقص­های ذاتی کمتر و کیفیت پوشش ­دهی سطح پروسکایت است که با آنالیزهای EIS، PL، VOC decay و AFM تأیید شد.

کلیدواژه‌ها


عنوان مقاله [English]

Synthesis and Optimization of Performance of Cu2ZnSnS4-based Nano-ink as Hole -Transfer Layer in Perovskite Solar Cells

نویسندگان [English]

  • Maryam Heidariramsheh 1
  • Mozhdeh Forouzandeh 2
  • Nima Taghavinia 2
1 Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran 14588-89694, Iran
2 Department of Physics, Sharif University of Technology, Tehran 11365-9161, Iran
چکیده [English]

In a perovskite solar cell, the photoactive layer is sandwiched between the electron and hole transfer layers (ETL and HTL). ETL and HTL play a very important role in photovoltaic performance. So far, record efficiency has been achieved using spiro-OMeTAD as HTL. But the high cost and complex synthesis process may limit its large-scale application. Inorganic semiconductors are a promising alternative due to their high mobility, stability, and the ability to synthesize and deposition by simple and inexpensive solution-based methods. In this study, a low-temperature carbon paste with Cu2ZnSnS4 (CZTS) nanomaterials were applied to transport and collect hole carriers. CuInS2 NPs were applied as the reference HTM. CZTS nanoparticles which are synthesized by heating-up method have a crystalline phase of wurtzite and a Zn-rich composition. The presence of the HTM layer at the perovskite/carbon interface has a significant effect on improving photovoltaic performance. The spin rate and number of HTM layers were investigated by spin-coating method. In the case of two-time deposition of nanomaterials, the maximum efficiencies of 12.61%, 13.38%, 10.74%, 11.40% were obtained for spin rates of 3000, 4000, 5000 and 6000 rpm, respectively. Increasing the number of HTM layers reduces the efficiency and current density. The spin rate of 4000 rpm and two-times deposition were obtained as optimal conditions. CIS-based device as a reference showed an efficiency of 15.5%. High performance compared to CZTS is affected by less defects and quality of perovskite surface coverage, which was confirmed by EIS, PL, VOC decay and AFM analyzes.

کلیدواژه‌ها [English]

  • solar cell
  • perovskite
  • hole transfer layer
  • chalcogenide semiconductor
  • Cu2ZnSnS4
[1]         P.K. Nayak, S. Mahesh, H.J. Snaith, D. Cahen, "Photovoltaic solar cell technologies: analysing the state of the art", Nat. Rev. Mater. 4, 269–285,  2019.
[2]         D. Li, D. Zhang, K. Lim, Y. Hu, Y. Rong, A. Mei, N. Park, H. Han, "A review on scaling up perovskite solar cells", Adv. Funct. Mater. 31, 2008621, 2021.
[3]         Y. Wang, C. Duan, P. Lv, Z. Ku, J. Lu, F. Huang, Y.-B. Cheng, "Printing strategies for scaling-up perovskite solar cells", Natl. Sci. Rev. 0, 2021.
[4]         S. Chen, Y. Deng, X. Xiao, S. Xu, P.N. Rudd, J. Huang, "Preventing lead leakage with built-in resin layers for sustainable perovskite solar cells, Nat. Sustain", 2021).
[5]         M. Forouzandeh, F. Behrouznejad, E. Ghavaminia, R. Khosroshahi, X. Li, Y. Zhan, Y. Liao, Z. Ning, N. Taghavinia, "Effect of indium ratio in CuInxGa1-xS2/carbon hole collecting electrode for perovskite solar cells", J. Power Sources. 475, 228658, 2020.
[6]         F. Behrouznejad, M. Forouzandeh, R. Khosroshahi, K. Meraji, M.N. Badrabadi, M. Dehghani, X. Li, Y. Zhan, Y. Liao, Z. Ning, N. Taghavinia, "Effective carbon composite electrode for low‐cost perovskite solar cell with inorganic CuIn0.75Ga0.25S2 hole transport material," Sol. RRL. 4, 1900564, 2020.
[7]         M. Heidariramsheh, M. Mirhosseini, K. Abdizadeh, S.M. Mahdavi, N. Taghavinia, "Evaluating Cu2SnS3 nanoparticle layers as hole-transporting materials in perovskite solar cells," ACS Appl. Energy Mater, 4, 5560-5573, 2021.
[8]         F. Mohamadkhani, M. Heidariramsheh, S. Javadpour, E. Ghavaminia, S.M. Mahdavi, N. Taghavinia, "Sb2S3 and Cu3SbS4 nanocrystals as inorganic hole transporting materials in perovskite solar cells", Sol. Energy. 223, 106–112, 2021.
[9]         C. Wu, K. Wang, Y. Jiang, D. Yang, Y. Hou, T. Ye, C.S. Han, B. Chi, L. Zhao, S. Wang, W. Deng, S. Priya, "All electrospray printing of carbon-based cost-effective perovskite solar cells, Adv. Funct. Mater," 31, 1–9, 2021.
[10]       S. Pitchaiya, M. Natarajan, A. Santhanam, V. Asokan, A. Yuvapragasam, V. Madurai Ramakrishnan, S.E. Palanisamy, S. Sundaram, D. Velauthapillai, "A review on the classification of organic/inorganic/carbonaceous hole transporting materials for perovskite solar cell application," Arab. J. Chem, 13, 2526–2557, 2020.
[11]       S. Li, Y.L. Cao, W.H. Li, Z.S. Bo, "A brief review of hole transporting materials commonly used in perovskite solar cells," Rare Met. 40, 2712–2729, 2021.
[12]       M. Li, Y. Chiang, P. Shen, S.S. Juang, P.C. Chen, "P-Type and inorganic hole transporting materials for perovskite solar cells," 63-109, 2017.
[13]       M.B. Gawande, A. Goswami, T. Asefa, X. Huang, R. Silva, X. Zou, R. Zboril, R.S. Varma, "Cu and Cu-based nanoparticles : synthesis and applications in catalysis, 116, 3722-3811, 2016.
[14]       H. Wang, Z. Yu, J. Lai, X. Song, X. Yang, A. Hagfeldt, L. Sun, "One plus one greater than two: high-performance inverted planar perovskite solar cells based on a composite CuI/CuSCN hole-transporting layer," J. Mater. Chem. A. 6, 21435–21444, 2018.
[15]       R. Singh, P.K. Singh, B. Bhattacharya, H.W. Rhee, "Review of current progress in inorganic hole-transport materials for perovskite solar cells," Appl. Mater. Today. 14, 175–200, 2019.
[16]       Y. Yang, M.T. Hoang, D. Yao, N.D. Pham, V.T. Tiong, X. Wang, H. Wang, Spiro-OMeTAD or CuSCN as a preferable hole transport material for carbon-based planar perovskite solar cells, J. Mater. Chem. A. 8, 12723–12734, 2020.
[17]       F. Matebese, R. Taziwa, D. Mutukwa, "Progress on the synthesis and application of CuSCN inorganic hole transport material in perovskite solar cells," Materials, 11, 2592, 2018.
[18]       E. Ghavaminia, F. Behrouznejad, M. Forouzandeh, R. Khosroshahi, S. Darbari, Y. Zhan, N. Taghavinia, "Polyvinylcarbazole as an efficient interfacial modifier for low-cost perovskite solar cells with CuInS2/Carbon hole-collecting electrode," Sol. RRL. 74, 1–8. 2021.
[19]       S. Giraldo, Z. Jehl, M. Placidi, V. Izquierdo-Roca, A. Pérez-Rodríguez, E. Saucedo, "Progress and perspectives of thin film kesterite photovoltaic technology: a critical review, Adv. Mater. 31, 1–11, 2019.
[20]       U. Syafiq, N. Ataollahi, P. Scardi, "Progress in CZTS as hole transport layer in perovskite solar cell," Sol. Energy. 196, 399–408, 2020.
[21]       H. Nan, J. Han, X. Yin, Y. Zhou, Z. Yao, X. Li, H. Lin, "Reduced graphene oxide/CZTSxSe1-x composites as a novel hole-transport functional layer in perovskite solar cells," ChemElectroChem. 6, 1500–1507, 2019.
[22]       J. Raiguru, B. Subudhi, B. Subramanyam, P. Mahanandia, "Intermittent sulfurization: a method promoting macro-porous Cu-Poor Zn-Rich-kesterite CZTS as HTM for inverted perovskite solar cell application," J. Mater. Sci. Mater. Electron, 31, 18427-18444 , 2020.
[23]       S.B. Patel, A.H. Patel, J. V Gohel, "A novel and cost effective CZTS hole transport material applied in perovskite solar cells," CrystEngComm. 20, 7677–7687, 2018.
[24]       Y. Chen, X. Feng, M. Liu, J. Su, S. Shen, "Towards efficient solar-to-hydrogen conversion: Fundamentals and recent progress in copper-based chalcogenide photocathodes," Nanophotonics. 5,  468–491, 2016.
[25]       F. Mehmood, H. Wang, W. Su, M. Khan, T. Huo, T. Chen, G. Chebanova, A. Romanenko, C. Wang, "Enhanced power factor and figure of merit of Cu2ZnSnSe4-based thermoelectric composites by Ag alloying," Inorg. Chem. 60, 3452–3459, 2021.
[26]       D.B. Mitzi, O. Gunawan, T.K. Todorov, K. Wang, S. Guha, "The path towards a high-performance solution-processed kesterite solar cell," Sol. Energy Mater. Sol. Cells. 95, 1421–1436, 2011.
[27]       L.S. Khanzada, I. Levchuk, Y. Hou, H. Azimi, A. Osvet, R. Ahmad, M. Brandl, P. Herre, M. Distaso, R. Hock, W. Peukert, M. Batentschuk, C.J. Brabec, "Effective ligand engineering of the Cu2ZnSnS4 nanocrystal surface for increasing hole transport efficiency in perovskite solar cells," Adv. Funct. Mater. 26, 8300–8306, 2016.
[28]       Q. Wu, C. Xue, Y. Li, P. Zhou, W. Liu, J. Zhu, S. Dai, C. Zhu, S. Yang, "Kesterite Cu2ZnSnS4 as a low-cost inorganic hole-transporting material for high-efficiency perovskite solar cells, ACS Appl. Mater. Interfaces. 7, 28466–28473, 2015.
[29]       M. Yuan, X. Zhang, J. Kong, W. Zhou, Z. Zhou, Q. Tian, Y. Meng, S. Wu, D. Kou, "Controlling the band gap to improve open-circuit voltage in metal chalcogenide based perovskite solar cells," Electrochim. Acta, 215, 374–379, 2016.
[30]       Z. Shadrokh, S. Sousani, S. Gholipour, Y. Abdi, Solar Energy Materials and Solar Cells Enhanced stability and performance of poly ( 4-vinylpyridine ) modified perovskite solar cell with quaternary semiconductor Cu2MSnS4 ( M: Co 2+ , Ni 2+ , Zn 2+ ) as hole transport materials, Sol. Energy Mater. Sol. Cells, 211, 110538, 2020.
[31]       Z. Shadrokh, S. Sousani, S. Gholipour, Z. Dehghan, Y. Abdi, B. Roose, "Stannite quaternary Cu2M(M = Ni, Co)SnS4 as low cost inorganic hole transport materials in perovskite solar cells," Energies. 13, 5938, 2020.
[32]       Z. Shadrokh, S. Sousani, S. Gholipour, Y. Abdi, "Enhanced photovoltaic performance and stability of perovskite solar cells by interface engineering with poly ( 4-vinylpyridine ) and Cu2ZnSnS4 & CNT," Sol. Energy. 201, 908–915, 2020.
[33]       Y. Cao, W. Li, Z. Liu, Z. Zhao, Z. Xiao, W. Zi, N. Cheng, "Ligand modification of Cu2ZnSnS4 nanoparticles boosts the performance of low temperature paintable carbon electrode based perovskite solar cells to 17.71%," J. Mater. Chem. A, 8, 12080–12088, 2020.
[34]       J. Van Embden, A.S.R. Chesman, J.J. Jasieniak, "The heat-up synthesis of colloidal nanocrystals, Chem. Mater. 27, 2246–2285, 2015.
[35]       O. Stroyuk, A. Raevskaya, O. Selyshchev, V. Dzhagan, N. Gaponik, D.R.T. Zahn, A. Eychmüller, "Green aqueous synthesis and advanced spectral characterization nanocrystal Inks," Scientific Reports, 8, 1–10, 2018.
[36]       H. Zhu, E. Prince, P. Narayanan, K. Liu, Z. Nie, E. Kumacheva, "Colloidal stability of nanoparticles stabilized with mixed ligands in solvents with varying polarity, Chem. Commun. 56, 8131–8134, 2020.
[37]       S. Mourdikoudis, L.M. Liz-Marzán, "Oleylamine in nanoparticle synthesis," Chem. Mater. 25, 1465–1476, 2013.
[38]       M. Heidariramsheh, M.M. Dabbagh, S.M. Mahdavi, A. Beitollahi, "Morphology and phase-controlled growth of CuInS2 nanoparticles through polyol based heating up synthesis approach," Mater. Sci. Semicond. Process. 121, 105401, 2021.
[39]       N. Kumari, S.R. Patel, J. V Gohel, "Current progress and future of perovskite solar cells, a comprehensive review," Rev. Adv. Mater. Sci, 53, 161-186, 2018.
[40]       S. Ye, H. Rao, Z. Zhao, L. Zhang, H. Bao, W. Sun, Y. Li, F. Gu, J. Wang, Z. Liu, Z. Bian, C. Huang, "A breakthrough efficiency of 19.9% obtained in inverted perovskite solar cells by using an efficient trap state passivator Cu(thiourea)I," Journal of the American Chemical Society, 139, 7504-7512, 2017.
[41]       S. Dias, K.L. Kumawat, S. Biswas, S.B. Krupanidhi, "Heat-up synthesis of Cu2SnS3 quantum dots for near infrared photodetection," RSC Adv. 7, 23301–23308, 2017.
[42]       M. Chiang, S. Chang, C. Chen, F. Yuan, H. Tuan, "Quaternary CuIn(S1− x Se x )2 nanocrystals: facile heating-up synthesis, band gap tuning, and gram-scale production," J. Phys. Chem. C, 115, 1592–1599, 2011.
[43]       A.S.R. Chesman, J. van Embden, N.W. Duffy, N. a S. Webster, J.J. Jasieniak, J. Van Embden, "In situ formation of reactive sulfide precursors in the one-pot, multigram synthesis of Cu2ZnSnS4 nanocrystals," Cryst. Growth Des. 13, 1712–1720, 2013.
[44]       R.A. Sperling, W.J. Parak, "Surface modification, functionalization and bioconjugation of colloidal Inorganic nanoparticles," Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 368, 1333–1383, 2010.
[45]       J.W. Thomson, K. Nagashima, P.M. MacDonald, G.A. Ozin, "From sulfur-amine solutions to metal sulfide nanocrystals: Peering into the oleylamine-sulfur black box," J. Am. Chem. Soc, 133, 5036–5041, 2011.
[46]       M. Kumar, A. Dubey, N. Adhikari, S. Venkatesan, Q. Qiao, "Strategic review of secondary phases, defects and defect-complexes in kesterite CZTS–Se solar cells," Energy Environ. Sci. 8, 3134-3159, 2015.
[47]       Z. Shadrokh, A. Yazdani, H. Eshghi, "Study on structural and optical properties ‎of wurtzite Cu2ZnSnS4 nanocrystals ‎synthesized via solvothermal method," Int. J. Nanosci. Nanotechnol, 13, 359–366, 2017.
[48]       U. V. Ghorpade, M.P. Suryawanshi, S.W. Shin, C.W. Hong, I. Kim, J.H. Moon, J.H. Yun, J.H. Kim, S.S. Kolekar, "Wurtzite CZTS nanocrystals and phase evolution to kesterite thin film for solar energy harvesting," Phys. Chem. Chem. Phys. 17, 19777–19788, 2015.
[49]       O. Selyshchev, Y. Havryliuk, M.Y. Valakh, V.O. Yukhymchuk, O. Raievska, O.L. Stroyuk, V. Dzhagan, D.R.T. Zahn, "Raman and X-ray photoemission identification of colloidal metal sulfides as potential secondary phases in nanocrystalline Cu2ZnSnS4 photovoltaic absorbers," ACS Appl. Nano Mater, 3, 5706–5717, 2020.
[50]       A.-J. Cheng, M. Manno, A. Khare, C. Leighton, S.A. Campbell, E.S. Aydil,  "Imaging and phase identification of Cu2ZnSnS4 thin films using confocal Raman spectroscopy ," J. Vac. Sci. 29 , 051203, 2011.
[51]       A. Khare, B. Himmetoglu, M. Johnson, D.J. Norris, M. Cococcioni, "Calculation of the lattice dynamics and Raman spectra of copper zinc tin chalcogenides and comparison to experiments," Journal of Applied Physics,111, 083707, 2012.
[52]       D. Dumcenco, Y.S. Huang, "The vibrational properties study of kesterite Cu2ZnSnS4 single crystals by using polarization dependent Raman spectroscopy," Opt. Mater., 35, 419–425, 2013.
[53]       M. Guc, S. Levcenko, I. V. Bodnar, V. Izquierdo-Roca, X. Fontane, L. V. Volkova, E. Arushanov, A. Pérez-Rodríguez, "Polarized Raman scattering study of kesterite type Cu2ZnSnS4 single crystals," Sci. Rep., 6, 1–7, 2016.
[54]       S. Engberg, F. Martinho, M. Gansukh, A. Protti, R. Küngas, E. Stamate, O. Hansen, S. Canulescu, J. Schou, "Spin-coated Cu2ZnSnS4 solar cells: a study on the transformation from ink to film, Sci. Rep. 10, 1–14, 2020.
[55]       H. Ren, X. Zou, J. Cheng, T. Ling, X. Bai, D. Chen, "Facile solution spin-coating SnO2 thin film covering cracks of TiO2 hole blocking layer for perovskite solar cells," Coatings., 8, 314, 2018.
[56]       I.A.T. R. Dewi, N. I. Baa’yah, "The effect of spin coating rate on the microstructure, grain size, surface roughness and thickness of Ba0.6Sr0.4TiO3 thin film prepared by the sol-gel process," Sci. Mater.,  25, 2–7, 2007.
[57]       M.D. Tyona, "A theoritical study on spin coating technique," Adv. Mater. Res., 2, 195–208, 2013.
[58]       P. Reiss, M. Carrière, C. Lincheneau, L. Vaure, S. Tamang, "Synthesis of semiconductor nanocrystals, focusing on nontoxic and earth-abundant materials," Chem. Rev. 116, 10731–10819, 2016.
[59]       B. Pejjai, V.R. Minnam Reddy, S. Gedi, C. Park, "Review on earth-abundant and environmentally benign Cu–Sn–X(X = S, Se) nanoparticles by chemical synthesis for sustainable solar energy conversion," J. Ind. Eng. Chem. 60, 19–52, 2018.
[60]       A.S. Nazligul, M. Wang, K.L. Choy, "Recent development in earth-abundant kesterite materials and their applications," J. Sustainability. 12, 5138, 2020.
[61]       S. Ma, H. Li, J. Hong, H. Wang, X. Lu, Y. Chen, L. Sun, F. Yue, J.W. Tomm, J. Chu, S. Chen, "Origin of band-tail and deep-donor states in Cu2ZnSnS4 solar cells and trheir suppression through Sn-poor composition," J. Phys. Chem. Lett., 10, 7929–7936, 2019.
[62]       A. Crovetto, S. Kim, M. Fischer, N. Stenger, A. Walsh, I. Chorkendorff, P.C.K. Vesborg, "Assessing the defect tolerance of kesterite-inspired solar absorbers," Energy Environ. Sci., 13, 3489–3503, 2020.
[63]       E. Sheibani, M. Heydari, H. Ahangar, H. Mohammadi, H.T. Fard, N. Taghavinia, M. Samadpour, F. Tajabadi, "3D asymmetric carbozole hole transporting materials for perovskite solar cells," Sol. Energy. 189, 404–411, 2019.