مطالعه ی نظری انکپسولاسیون نانوذرات داکاربازین بارگذاری شده بر بستر نانولوله زیست تخریب پذیر بور نیتریدی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه، شیمی، دانشگاه آزاد اسلامی واحد تهران مرکزی، تهران، تهران

2 گروه شیمی، دانشگاه آزاد اسلامی واحد رودهن، رودهن، تهران، ایران

چکیده

پژوهش حاضر که به صورت مطالعه­ی کاربردی-توسعه ­ای انجام گرفته است و به بررسی افزایش کارایی و بهبود ویژگی نانولوله های بور نیتریدی تک دیواره آرمچیر (6و6) به عنوان نانوحامل برای داروی داکاربازین می پردازد. این بررسی به طریق نظری به بارگذاری داروی داکاربازین بر نانولوله نیترید بور (6و6) در جهات متفاوت می پردازد و اثرات ناشی از عدم استقرار الکترونی، برهمکنش‌های الکترواستاتیکی و دافعه­های فضایی را بر ویژگی ساختاری، الکترونی و واکنش پذیری داروی داکاربازین بر بستر نانولوله نیترید بور(6و6) با طول 6 آنگستروم مورد بررسی قرار گرفت و محاسبات گفته شده با استفاده از محاسبات مکانیک کوانتومی تئوری تابعیت چگالی،(Density Functional Theory) DFT، در سطح نظری محاسباتیB3LYP/6-31G* به کار گرفته شد. از توزیع اوربیتال­های مولکولی نیز برای فهم تغییرات الکترونی ساختارها، انرژی جذب  (Ead)و هدایت الکتریکی در طی فرایند جذب استفاده شد. همچنین، از آنالیز NBO (Natural Bond Orbital analysis)، برای محاسبه اثرات انتقالات الکترونی ناشی از برهمکنش های استریوالکترونی و برهمکنش­های الکترواستاتیکی و سایر ویژگی سیستم­های مورد نظر به کار گرفته شد. نقش پارامترهای ساختاری، انتقالات الکترونی، انرژی اوربیتال های دهنده و پذیرنده الکترون، جمعیت های اوربیتالی و چگالی بار بر بستر نانولوله ­های نیترید بور در واکنش با داروی داکاربازین مورد بررسی قرار گرفت. به منظور تعیین خاصیت رسانایی الکتریکی و رفتار شیمیایی نانولوله­ های بور نیتریدی در واکنش با داکاربازین، انرژی های الکترونی و ممان های دوقطبی مورد محاسبه قرار گرفت.

کلیدواژه‌ها


عنوان مقاله [English]

Theoretical study of encapsulation of dacarbazine nanoparticles loaded on a biodegradable boron nitride nanotube substrate

چکیده [English]

The present study is an applied-developmental study that investigates the increase in efficiency and improvement of the properties of single-walled boron nitride nanotubes (6,6) as nanocarriers for dacarbazine. In this research, the loading of dacarbazine on boron nitride nanotube (6,6) was investigated theoretically and the electron delocalization effects, electrostatic interaction, steric repulsion effects on the structural, electronic properties, and reactivity of dacarbazine on the boron nitride nanotube substrate were studied using quantum mechanical calculations of DFT (Density Functional Theory) evaluated at the B3LYP/6-31G* level of theory. The molecular orbitals distribution was investigated to understand changes in the electronic structures, adsorption energies (Ead), and electrical conductivity during the adsorption process. Frequency calculations were performed to determine the thermodynamic functions and vibrational frequencies in the gas phase. NBO (Natural Bond Orbital analysis) analysis was used to calculate the electronic transition effects as well as electrostatic interactions and other properties of the studied systems. The role of structural parameters, electron transfers, donor-acceptor orbital energies, orbital populations, and NBO charges on the boron nitride nanotube in interaction with dacarbazine were discussed. To determine the electrical conductivity and chemical properties of boron nitride nanotubes reacting by dacarbazine, electron energies, the dipolar moment was calculated and investigated.

کلیدواژه‌ها [English]

  • “Dacarbazine”
  • “Boron nitride nanotube (6
  • 6)”
  • “Adsorption energy”
  • “Density functional theory (DFT)”
  • “Electrostatic interaction”
  1. [1] M. A. Ratner, D. Ratner, “Nanotechnology: A gentle introduction to the next big idea,” Prentice Hall Professional, 2003.

     [2] C. S. Kumar, “Biological and pharmaceutical nanomaterials,” Wiley-VCH, 2006.

    [3] N. Nishiyama, K. Kataoka, “Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery,” Pharmacology & therapeutics, 112, 630-648, 2006.

    [4] L. Ricotti, T. Fujie, H. Vazao, G. Ciofani, R. Marotta, R. Brescia, C. Filippeschi, I. Corradini, M. Matteoli, V. Mattoli, L. Ferreira, A. Menciassi, “Boron nitride nanotube-mediated stimulation of cell co-culture on micro-engineered hydrogels,” PLoS One, 8, 71707-71722, 2013.

    [5] G. Ciofani, V. Raffa, A. Menciassi, P. Dario, “Preparation of boron nitride nanotubes aqueous dispersions for biological applications,” Journal of Nanoscience and Nanotechnology, 8, 6223-6231, 2008.

    [6] G. Ciofania, V. Raffaa, A. Menciassia, “Cuschieria. Boron nitride nanotubes: An innovative tool for nanomedicine,” Nano Today, 4, 8-10, 2009.

    1. M. Zandi, N. Dardmeh, H. Almasi, S. Pirsa, “Identification of cardamom encapsulated alginate–whey protein concentrates microcapsule release kinetics and mechanism during storage, stew process and oral consumption,” Journal of Food Process Engineering, 40, e12314- e12325, 2017.
    2. K. A. Sharifi, S. Pirsa, “Biodegradable film of black mulberry pulp pectin/chlorophyll of black mulberry leaf encapsulated with carboxymethylcellulose/silica nanoparticles: Investigation of physicochemical and antimicrobial properties,” Materials Chemistry and Physics, 267, 124580, 2021.
    3. I. K. Sani, S. P. Geshlaghi, S. Pirsa, A. Asdagh, “Composite film based on potato starch/apple peel pectin/ZrO2 nanoparticles/microencapsulated Zataria multiflora essential oil; investigation of physicochemical properties and use in quail meat packaging,” Food Hydrocolloids, 117, 106719, 2021.
    4. S. Pirsa, “Biodegradable film based on pectin/Nano-clay/methylene blue: Structural and physical properties and sensing ability for measurement of vitamin C,” International Journal of Biological Macromolecules,” 163, 666-675, 2020.
    5. A. JabrailiS. PirsaM. PirouzifardS. Amiri,  “Biodegradable nanocomposite film based on gluten/silica/calcium chloride: physicochemical properties and bioactive compounds extraction capacity,” Journal of Polymers and the Environment, 1-5, 2021.
    6. S. N. Hosseini, S. Pirsa, J. Farzi, “Biodegradable nano composite film based on modified starch-albumin/MgO; antibacterial, antioxidant and structural properties,” Polymer Testing, 97,107182, 2021.

    [13] S. Nussbaumer, P. Bonnabry, J. L. Veuthey, S. “Fleury-Souverain, Analysis of anticancer drugs: a review,” Talanta, 85, 2265-2289, 2011.

    [14] M. A. Iradyan, N. S. Iradyan, G. M. Stepanyan, F.G. Arsenyan, B.T. Garidbzhanyan, “Antitumor activity of imidazole derivatives: dacarbazine and the new alkylating agent imidazene (Review),” Pharmaceutical Chemistry Journal, 44, 175–182, 2010.

    [15] M. Rooseboom, N.J. Commandeur, N.P. Vermeulen, Enzyme-catalyzed activation of anticancer prodrugs, Pharmacol. Rev. 56 (2004) 53–102.

    [16] Y. F. Shealy, C. A. Krauth, J. A. Montgomery, “Imidazole I. Coupling reactions of 5-diazoimi dazole-4-carboxamide,” The Journal of Organic Chemistry, 27, 2150-2154, 1962.

    [17] M. J. Frisch, G. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. Cheeseman, “Antioxidant potential of glutathione: a theoretical study,” Russian Journal of Physical Chemistry B, 115, 11269-11277, 2011.

    [18] Z. Li, H. Wan, Y. Shi, P. Ouyang, “Personal Experience with Four Kinds of Chemical Structure Drawing Software: Review on ChemDraw, ChemWindow, ISIS/Draw, and ChemSketch,” Journal of Chemical Information and Modeling, 44, 1886-1890, 2004.

    [19] R. Dennington, T. Keith, J. Millam, Gauss View, Version 5. Semichem Inc., Shawnee Mission 2009.

    [20] D. Glendening, J.K. Badenhoop, A.E. Reed, J.E. Carpenter, J.A. Bohmann, C.M. Morales, F. Weinhold, “Theoretical Chemistry Institute, University of Wisconsin, Madison,” WI, NBO version 5.G, 2004.

    [21] J.M. Seminario and P. Politzer, Eds., Modern Density Function Theory, a Tool for Chemistry, Elsevier, Amsterdam, 1995.

    [22] N. Masnabadi, “DFT study and NBO analysis of conformation properties of 2,5,5-trimethyl-1,3,2-dioxaphosphinane 2-selenide and their dithia and diselena analogous,” Journal of Sciences, Islamic Republic of Iran, 31,137-46, 2020.

    [23] E. Danaie, S. Masoudi, N. Masnabadi, “A Computational Study of the Conformational Behavior of 2, 5-Dimethyl-1, 4-dithiane-2, 5-diol and Analogous S and Se: DFT and NBO Study,” Letters in Organic Chemistry,  1, 17, 749-59, 2020.

    [24]. L. A. Flippin, D. W. Gallagher, K. Jalali-Araghi, “A convenient method for the reduction of ozonides to alcohols with borane-dimethyl sulfide complex,” The Journal of Organic Chemistry, 54, 1430-1432, 1989.

    [25] P.W. Ayers, R. G. Parr, “Variational Principles for Describing Chemical Reactions: The Fukui Function and Chemical Hardness Revisited,” Journal of the American Chemical Society, 122, 2010-2018, 2000.

    [26] J. Padmanabhan, R. Parthasarathi, V. Subramanian, P. K. Chattaraj, “Electrophilicity-based charge transfer descriptor,” The Journal of Physical Chemistry A, 111, 1358-1361, 2007.

    [27] R.G. Parr, L. von Szentpály, S. Liu, “Electrophilicity Index,” Journal of the American Chemical Society, 121,1922-1924, 1999.

    [28] P.K. Chattaraj, S. Giri, “Stability, reactivity, and aromaticity of compounds of a multivalent superatom,” The Journal of Physical Chemistry A, 111, 11116-11121, 2007.

    [29] R. Parthasarathi, J. Padmanabhan, M. Elango, V. Subramanian, P. K. hattaraj, “Intermolecular reactivity through the generalized philicity concept,” Chemical Physics Letters, 394, 225-230, 2004.

    [30] M. Sheikhi, S. Shahab, M. Khaleghian, F.H. Hajikolaee, I. Balakhanava and R. Alnajjar, “Adsorption properties of the molecule resveratrol on CNT (8,0-10) nanotube: Geometry optimization, molecular structure, spectroscopic (NMR, UV/Vis, excited state), FMO, MEP and HOMO-LUMO investigations,” Journal of Molecular Structure, 1160, 479-487, 2018.

    [31] S. N. Shakhab, L. Filippovich, M. Sheikhi, H. Yahyaei, M. Aharodnikoval, R. Kumar, M. A. Khaleghian, “Spectroscopic (polarization, excited state, FT-IR, UV/Vis and 1H NMR) and thermophysical investigations of new synthesized azo dye and its application in polarizing film,” American Journal of Materials Synthesis and Processing, 2, 17-23, 2017.