ساخت و بررسی کارایی حسگر مقاومتی بر پایه نانوذرات روی اکسید برای شناسایی گاز اتانول تحت تابش پرتو فرابنفش در دمای پایین

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده فیزیک و مهندسی هسته‌ای، دانشگاه صنعتی شاهرود، شاهرود، سمنان

چکیده

حسگری بخار مایعات و گازهای قابل اشتعال در دماهای پایین به لحاظ رعایت اصول ایمنی و استانداردهای موجود در مراکز درمانی، پژوهشی، صنعتی، معادن و پالایشگاه­ها از اهمیت ویژه­ای برخوردار است. بر این اساس پژوهش حاضر، با هدف ساخت و بررسی کارایی حسگر مقاومتی بر پایه نانو ذرات روی اکسید برای شناسایی گاز اتانول تحت تابش پرتو فرابنفش در دمای پایین تعریف شد. برای ساخت قطعات حسگری مورد نیاز در این پژوهش، نانوذرات روی اکسید به ابعاد تقریبا nm 40 به روش آب­ گرمایی سنتز شد و پارامترهای مربوط به حسگرهای گازی تحت تابش فرابنفش برای غلظت­های متفاوت گاز اتانول در دماهای پایین مورد بررسی قرار گرفت. نتایج حاصل از شناسایی حسگر ساخته شده حاکی از آن است که این حسگر حساسیت قابل توجهی را به گاز اتانول نشان می­ دهد. حساسیت 40 و 113 درصدی به ppm 800 اتانول تحت تابش UV در دمای اتاق و دمای C° 80 بدست آمد. ویژگی­های دیگر این حسگر مانند خطی بودن منحنی کالیبراسیون، زمان سریع پاسخ­دهی، قابلیت گزینش­گری و پایداری، این حسگر را برای استفاده در محیط­هایی که امکان اندازه­گیری تحت دمای بالا در آن محیط با خطرهای احتمالی مانند انفجار روبرو است، مناسب می­ سازد.
 

کلیدواژه‌ها


عنوان مقاله [English]

Fabrication and investigation of the resistive sensor based on ZnO nanoparticles for ethanol sensing under UV-irradiation at low temperatures

نویسندگان [English]

  • fatemeh bageri
  • sahar afzali
  • hamid haratizadeh
چکیده [English]

The safety and standard rules of industrial, medical, and research centers have restricted using heat sources for sensing the flammable and toxic gases because of the reduction of the probable risks. Accordingly, in this work, ZnO nanoparticles were synthesized by the hydrothermal method. The resistive gas sensors were fabricated based on the as-prepared ZnO nanoparticles to detect ethanol gas. The results obtained indicated that the performance of the sensors was significantly improved for sensing ethanol. Sensitivity of 40 and 113% to 800 ppm ethanol was obtained under UV irradiation at room temperature and 80 ° C, respectively. The other features of this sensor include short response time, selectivity, and stability, linear calibration curve. Therefore, this sensor could be applied in environments where operating sensors at high temperatures have many challenges due to potential risks.

کلیدواژه‌ها [English]

  • Resistive sensor
  • Ethanol gas
  • Nanostructure
  • ZnO
  • UV-irradiation
[1] S. Feng, F. Farha, Q. Li, Y. Wan, Y. Xu, T. Zhang, H. Ning - Sensors, , “Review on smart gas sensing technology”, Sensors, 17, 2019.
[2] S. Matindoust, M. Baghaei-NejadM.H.S. Abadi, "Food quality and safety monitoring using gas sensor array in intelligent packaging", Sensors Review, 2, 169–183, 2016.
[3] T. TharsikaM. ThanihaichelvanA. Haseeb, S.A, Akbar.,"Highly sensitive and selective ethanol sensor based on ZnO nanorod on SnO2 thin film fabricated by spray pyrolysis", Frontiers in Materials, 122, 5-9, 2017.
[4] Q. Li, D. Chen, J. Miao, S. Lin, Z. Yu, D. Cui, Z. Yang, X. Chen, "Highly sensitive sensor based on ordered porous ZnO nanosheets for ethanol detecting application", Sensors & Actuators: B. Chemical, 2021.
[5] C.Baskar, N. Nesakumar, J.B. Rayappan, M. Doraipandian, "A framework for analysing E-Nose data based on fuzzy set multiple linear regression: Paddy quality assessment", Sensors and Actuators A, 200-209, 2017.
[6] E. Tan, D.  Slaughter, J.‏ Thompson "Freeze damage detection in oranges using gas sensors ", Postharvest Biology and Technology, 2, 177-182, 2005.
[7] R. Lima, G. Danielski, A.C. Pires, "Mastitis detection and prediction of milk composition using gas sensor and electrical conductivity", Food Bioprocess Technol, 2017.
[8] R.S. Lima, G.C. Danielski, A.C.S. Pires., "Electronic nose for quality control of colombian coffee through the detection of defects in “cup tests", sensors, 1, 36-46, 2010.
[9] K. Timsorn, T. Thoopboochagorn, N. Lertwattanasakul, C. Wongchoosuk, "Evaluation of bacterial population on chicken meats using a briefcase electronic noses", biosystems engineering, 116-125, 2016.
[10] S.P. Chang, K.Y. Chen "UV illumination room-temperature ZnO nanoparticle ethanol gas sensors", ISRN Nanotechnology, 2012.   
[11] Z. Li, H. Li, Z. Wu, M. Wang, J. Luo, H. TorunP.A. Hu, C. Yang, M. Grundmann, X. Liud,., Y. Fu, "Advances in designs and mechanisms of semiconducting metal oxide nanostructures for high-precision gas sensors operated at room temperature", Materials Horizons, 470-506, 2018.
[12] R. Mostafavian Maleki, A. Esmaili, R. Taheri Ghahrizjani, "The use of Ag doped SnO2 nanorods and nanoparticles in designing, fabrication and sensitivity enhancement of H2S gas sensor considering ultra-violet ray and self-heating", nanomeghyas,3, 76-89, 2020
[13] M. Salimi. S.M.M Hosseini, "Performance evaluation of the ethanol gas sensor based
on electrochemically synthesized zinc oxide nanotubes'', nanomeghyas,4, 60-68, 2021
[14] Y. Deng, "Semiconducting Metal Oxides for Gas Sensing", Nature Singapore, (2018).
[15] E. WongratN. Chanlek, C. Chueaiarrom , B. Samransuksamer, N. Hongsith, S. Choopun, "Low temperature ethanol response enhancement of ZnO nanostructures sensor decorated with gold nanoparticles exposed to UV illumination", Sensors and Actuators A, 188–197, 2016.   
[16] J. Gong, Y. Li, X. Chai, Z. Hu, Y. Deng, "UV-light-activated ZnO fibers for organic gas sensing at room temperature", J. Phys. Chem. 2, 1293–1298, 2010.
[17] V.S. BhatiM. HojamberdievM. Kumar, "Enhanced sensing performance of ZnO nanostructures-based gas sensors: A review", Energy Reports. C, 46–62, 2020.
[18] B. Gong, T. Shi, W. Zhu, G. Liao, X. Li, J. Huang, T. Zhou, Z. Tang, "UV irradiation-assisted ethanol detection operated by the gas sensor based on ZnO nanowires/optical fiber hybrid structure", Sensors and Actuators B, 821-827, 2017.
[19] Z. Yuan, R. Li, F. Meng, J. Zhang, K. Zuo, E. Han, T. Zhou, Z. Tang, "Approaches to enhancing gas sensing properties: a review", Sensors, 7, 2019.
[20] S. SharmaM. Madou, "A new approach to gas sensing with nanotechnology", Phil. Trans. R. Soc. A, 1967, 2012,
[21] F. Xu, H.P. Ho, "Light-activated metal oxide gas sensors: a review", micromachines, 11, 2017.
[22] B.P.J. de Lacy Costello, R.J. Ewen, N.M. Ratcliffe, M. Richards,  "Highly sensitive room temperature sensors based on the UV-LED activation of zinc oxide nanoparticles", Sensors and Actuators B, 2, 945–952, 2008.
[23] H. Chen, Y. Liu, C. Xie, J. Wu, D. Zeng, Y. Liao, "A comparative study on UV light activated porous TiO2 and ZnO film sensors for gas sensing at room temperature", Ceramics International, 1, 503–509, 2012.
[24] Q.P. Zhang, G.Z. Xie, H.F. Du, J. Yang, Y.J. Su, H. TAI ,M. XU,K. ZHAO,  "Adsorption behaviors of gas molecules on the surface of ZnO nanocrystals under UV irradiation", Sci China Tech Sci, 12, 2226–2235, 2019.
[25] S.S. Kumar, P. Venkateswarlu, V.R. Rao, G. Nageswara Rao, "Synthesis, characterization and optical properties of zinc oxide nanoparticles", International Nano Letters, 2013.
[26] A. Galdámez-Martinez, G. Santana, F. Güell, P. R. Martínez-Alanis, A. Dutt, "Photoluminescence of ZnO Nanowires: A Review", Nanomaterials, 2020.
[27] K. Lim, M. Azmi Abdul Hamid, R. Shamsudin, N.H. Al-Hardan, I. Mansor, W. Chiu "Temperature-driven structural and morphological evolution of zinc oxide nano-coalesced microstructures and its defect-related photoluminescence properties", Materials, 2016.
[28] A. MirzaeiJ.H. LeeS.M. MajhiM. Weber, M. Bechelany, H. Woo Kim, S. Sub Kim, "Resistive gas sensors based on metal-oxide nanowires", Applied Physics, 2019.
[29] R. Kumar, X. Liu, J. Zhang, M. Kumar , "Room‑temperature gas sensors under photoactivation: from metal oxides to 2D materials", Nano-Micro Lett, 164, 2020.
[30] N. Sihar, T.Y. Tiong, C.F. Dee, P. Choon Ooi, A. Hamzah, M. Mohamed, B. Majlis, "Ultraviolet light-assisted copper oxide nanowires hydrogen gas sensor", Nanoscale Research Letters, 150, 2018.
[31] L. Li, P. Salvador, G. Rohrer, "Photocatalysts with internal electric fields", Nanoscale Research Letters, 24-42, 2014.
[32] Y.F. Sun, S.B. Liu, F.L. Meng, J.Y. Liu, Z. Jin, L.T. Kong, J.H.  Liu, "Metal oxide nanostructures and their gas sensing properties: a review", sensors, 3, 2012.
[33] A. Dey , "Semiconductor metal oxide gas sensors: A review", Materials Science & Engineering B, 206–217, 2018.
[34] M. Alenezi, A. Alshammari, K. D. G. I. Jayawardena, M. Beliatis, S. Henley, S. R. P. Silva, "Role of the exposed polar facets in the performance of thermally and UV activated ZnO nanostructured gas sensors ", Phys. Chem. C, 17850-17858, 2013.
[35] J. Zhai, T. Wang, C. Wang, D. Liu, "UV-light-assisted ethanol sensing characteristics of g-C3N4/ZnO composites at room temperature", Applied Surface Science, 2018.