بررسی خصوصیات ترمودینامیکی و الکترونیکی جذب فنیل زین روی نانو قفس فولرن

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه شیمی، دانشکده علوم پایه، دانشگاه آزاد اسلامی ایران، واحد کرمان، ایران

چکیده

 
مقاله حاضر، با استفاده ازتئوری تابعیت چگالی در سطح کوانتومی B3LYP/6-311+G (d, p) برای تعیین ویژگی های واکنش پذیری جذب فنیل زین به عنوان داروی ضد افسردگی بر C60 (ih) به عنوان حامل دارویی در فاز گازی انجام شده است. ویژگی شیمیایی (ممان دو قطبی)، ویژگی های ترمودینامیکی (انرژی آزاد گیبس، آنتالپی، آنتروپی و همچنین، ظرفیت حرارتی) و پارامترهای الکترونیکی (σ، μ، ω،χ, و η) برای این دارو محاسبه شدند. براساس محاسبات کوانتومی انجام شده فنیل زین پایداری و واکنش‌پذیری مناسبی را نشان می دهد. با توجه به ساختار شیمیایی فنیل زین سه جایگاه فعال برای پیوند شیمیایی  فنیل زین با فولرن یافت شده است، که همه آنها با توجه به مقدار فرکانس مثبت و انرژی پیوندی منفی، پایداری ترمودینامیکی را نشان می دهند.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of thermodynamic and electronic properties of Phenelzine adsorption on fullerene Nanocage

نویسنده [English]

  • sayadali ahmadi
چکیده [English]

The present paper is performed using the density functional theory at the quantum level of B3LYP / 6-311 + G (d, p) to determine the reactivity properties of phenylzine adsorption as an antidepressant on C60 (ih) as a drug carrier in the gas phase. Chemical properties (dipole moment), thermodynamic properties (Gibbs free energy, enthalpy, entropy and heat capacity) and electronic parameters (σ, μ, ω, χ, and η) were calculated for this drug. Based on quantum calculations, phenylzine shows good stability and reactivity. Due to the chemical structure of phenylzine, three active sites have been found for the chemical bonding of phenylzine with fullerene, all of which show thermodynamic stability with respect to the positive frequency value and the negative bond energy.

کلیدواژه‌ها [English]

  • DFT
  • phenelzine
  • C60
  • Bucky ball
  • Reactivity
  • stability
[1] M. B. Parent, M .K. Habib, G. B. Baker, “Task-dependent effects of the antidepressant/antipanic drug phenelzine on memory,” Psychopharmacology, 142, 280-288, 1999.
[2] P. Hassanzadeh, A. Hassanzadeh, “Effects of psychotropic drugs on nerve growth factor protein levels in the rat brain” Physiology and Pharmacology, 13, 244-252, 2009.
[3] B. Caddy, A. H. Stead, “Some fluorescent derivatives of the drug phenelzine” Analyst, 103, 937-949, 1978.
[4] E.C. Johnstone, “The relationship between acetylator status and inhibition of monoamine oxidase, excretion of free drug and antidepressant response in depressed patients on phenelzine” Psychopharmacologia, 46, 289-294, 1976.
[5] S. Wang, K. Poon, Z. Cai, “Removal and metabolism of triclosan by three different microalgal species in aquatic environment.” Journal of hazardous materials, 342, 643-650, 2018.
[6] B. G. AS, J. C. Prasana, S. Muthu, C. S. Abraham, H. A. David, “Spectroscopic and quantum/classical mechanics based computational studies to compare the ability of andrographolide and its derivative to inhibit nitric oxide synthase” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 218, 374-387, 2019.
[7] Z. Wang, H. F. Su, Y. Z. Tan, S. Schein, S. C. Lin, W. Liu, S. A. Wang, W. G. Wang, C. H. Tung, D. Sun, L. S. Zheng, “Assembly of silver trigons into a buckyball-like Ag180 nanocage” Proceedings of the National Academy of Sciences, 114, 12132-12137, 2017.
[8] S. H. Kang, G. Kim, Y. K. Kwon, “Adsorption properties of chalcogen atoms on a golden buckyball Au16− from first principles” Journal of Physics: Condensed Matter, 23, 505301, 2011.
[9] S. Mallawaarachchi, M. Premaratne, P. K. Maini, “Superradiant cancer hyperthermia using a buckyball assembly of quantum dot emitters” IEEE Journal of Selected Topics in Quantum Electronics, 25, 1-8, 2018.
[10] L. Kalaugher, “Buckyball pioneer dies” Physics World, 18, 9, 2005.
[11] M. Adolfsson-Erici, M. Pettersson, J. Parkkonen, J. Sturve, “Triclosan, a commonly used bactericide found in human milk and in the aquatic environment in Sweden” Chemosphere, 46, 1485-1489, 2002.
[12] M. Zhao, Z. Huang, S. Wang, L. Zhang, C. Wang, “Experimental and DFT study on the selective adsorption mechanism of Au (Ⅲ) using amidinothiourea-functionalized UiO-66-NH2” Microporous and Mesoporous Materials, 294, 109905, 2020.
[13] X. M. Lopez‐Fernandez, H. R. Khataee, M. Y. Ibrahim, S. Sourchi, L. Eskandari, M. T. Noranis, “Computing optimal electronic and mathematical properties of Buckyball nanoparticle using graph algorithms” COMPEL-The international journal for computation and mathematics in electrical and electronic engineering, 31, 2, 387-400, 2012.
[14] A. E. Yavuz, S. H. Bayarı, N. Kazancı, “Structural and vibrational study of maprotiline” Journal of Molecular Structure, 924, 313-321, 2009.
[15] M. S. Garelli, F. V. Kusmartsev, “Buckyball quantum computer: realization of a quantum gate.” The European Physical Journal B-Condensed Matter and Complex Systems, 48, 199-206, 2005.
[16] A. Takzare, D. D. Ghafoor, A. F. Siddiqi, S. Ravali, M. Shalbaf, M. Bakhtiar, “Trachyspermum copticum essential oil incorporated niosome for cancer treatment” Journal of Drug Delivery Science and Technology, 52, 818-824, 2019.
[17] A. Ceulemans, J. T. Muya, G. Gopakumar, M. T. Nguyen, “Chemical bonding in the boron buckyball” Chemical Physics Letters, 461, 226-228, 2008.
[18] J. T. Muya, M. T. Nguyen, A. Ceulemans, “Quantum chemistry study of symmetric methyne substitution patterns in the boron buckyball.” Chemical Physics Letters, 483, 101-106, 2009.
[19] S. Jo, S. Kim, B. H. Lee, A. Tandon, B. Kim, S. H. Park, M. K. Kim, “Fabrication and characterization of finite-size DNA 2D ring and 3D buckyball structures.” International journal of molecular sciences, 19, 1895, 2018.
[20] C. Wang, W. Huang, J. Lin, F. Fang, X. Wang, H. Wang, “Triclosan-induced liver and brain injury in zebrafish (Danio rerio) via abnormal expression of miR-125 regulated by PKCα/Nrf2/p53 signaling pathways.” Chemosphere, 241, 125086, 2020.
[21] M. Shen, W. Jia, Y. You, Y. Hu, F. Li, S. Tian, J. Li, Y. Jin, D. Han, “Luminescent properties of CdTe quantum dots synthesized using 3-mercaptopropionic acid reduction of tellurium dioxide directly.” Nanoscale research letters, 8, 1-6, 2013.
[22] Y. Shirai, A. J. Osgood, Y. Zhao, K. F. Kelly, J. M. Tour, “Directional control in thermally driven single-molecule nanocars.” Nano Letters, 5, 2330-2334, 2005.
[23] M. Caricato, M. J. Frisch, eds., Gaussian 09: IOps Reference. Gaussian, 2009.
[24] C. Lee, X. Wei, J. W. Kysar, J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene.” science, 321, 385-388, 2008.
[25] S. Chiodo, N. Russo, E. Sicilia “LANL2DZ basis sets recontracted in the framework of density functional Theory” The Journal of Chemical Physics, 125, 104107, 2006.
[26] J. C. Faver, Z. Zheng, K. M. Merz Jr., “Model for the fast estimation of basis set superposition error in biomolecular systems” The Journal of Chemical Physics, 135, 144110 , 2011.
[27] J. J. Sahayarayan, K. S. Rajan, R. Vidhyavathi, M. Nachiappan, D. Prabhu, S.Alfarraj, S. Arokiyaraj, A. N. Daniel, “In-silico protein-ligand docking studies against the estrogen protein of breast cancer using pharmacophore based virtual screening approaches” Saudi Journal of Biological Sciences, 28(1), 400-407, 2020.
[28] J. Luo, R. Zhang, X. Wang, Z. Hou, S. Guo, B. Jiang, “Binding properties of marine bromophenols with human protein tyrosine phosphatase 1B: Molecular docking, surface plasmon resonance and cellular insulin resistance study” International Journal of Biological Macromolecules, 163, 200-208, 2020.