بررسی نوری کوانتومی فاکتور کیفیت و شکافتگی ترازها برای یک نقطۀ کوانتومی درون کاواک نوری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه فیزیک، دانشکده علوم پایه، دانشگاه ملایر، ملایر

2 گروه فیزیک، دانشکده علوم پایه، دانشگاه ملایر، ملایر، ایران

چکیده

نانوسیستم شامل نقطۀ کوانتومی درون کاواک نوری بستری برای مطالعۀ پدیده های مهم کوانتومی نظیر جمع نشدگی فوتون، درهم تنیدگی، تولید تک فوتون و اطلاعات کوانتومی است. استفاده از چنین سیستمی در این فناوری ­ها منوط به دستیابی به حالت تزویج قوی بین نقطۀ کوانتومی و کاواک نوری است. در این پژوهش با استفاده از رویکرد نوری کوانتومی، ویژه مقادیر انرژی مربوط به سیستمی شامل یک نقطۀ کوانتومی درون یک کاواک نوری محاسبه شد. سپس، به ازای نقاط کوانتومی و کاواک های نوری متفاوت، شرایط آستانه برای دستیابی به حالت تزویج قوی مورد مطالعه قرار گرفت. نتایج نشان داد که با افزایش ثابت جفت شدگی، شکافتگی ترازها بیشتر شده و آستانه برای دستیابی به حالت تزویج قوی مهیاتر می ­شود. آستانه شکافتگی ترازها برای نقطۀ کوانتومی با سرعت واهلش 2 میکروالکترون ولت درون کاواک های نوری با سرعت­ های واهلش 45 تا 205 میکرو الکترون ولت در ثوابت تزویج 10/75 تا 50/75 میکروالکترون ولت رخ داد. در واقع مشاهده شد به منظور دستیابی به حالت تزویج قوی در چنین سیستمهایی، باید به سراغ مهندسی کاواک هایی با سرعت واهلش کمتر رفت زیرا تغییر در نقاط کوانتومی تاثیر چشمگیری در رسیدن به این هدف ندارد. همچنین، در سیستمی با چنین نقطۀ کوانتومی که با ثابت تزویج 35 میکروالکترون ولت در تزویج با کاواک نوری با انرژی های 20 تا 140  میکروالکترون ولت است، فاکتور کیفیت در بازۀ 4930 تا 5060 است.

کلیدواژه‌ها


عنوان مقاله [English]

Quantum optical study of quality factor and energy level splitting for a quantum dot within optical cavity

نویسنده [English]

  • m. mohebifar 1
1 Department of Physics, Malayer University
2
چکیده [English]

A nanosystem containing a quantum dot within an optical cavity is a platform for the study of important quantum phenomena such as photon antibunching, entanglement, single photon generation, and quantum information. The use of such a system in these technologies depends on achieving a strong coupling mode between the quantum dot and the optical cavity. In this study, using a quantum optical approach, the energy Eigen values of a system including a quantum dot within an optical cavity were calculated. Then, for different quantum dots and optical cavities, the threshold conditions were studied to achieve strong coupling mode. The results showed that with increasing the coupling constant, the energy levels splitting increases and the threshold conditions are more favorable for achieving strong coupling mode. The energy level splitting threshold for the quantum dot with a decay rate of 2 μeV within optical cavities with a decay rate of 45 to 205 μeV occurred at a coupling constant of 10.75 to 50.75 μeV. In fact, it was observed that in order to achieve a strong coupling mode in such systems, it is necessary to go to the engineering of cavities with lower decay rates because the change in quantum dots does not have a significant effect on achieving this goal. Also, in a system with such a quantum dot, which has a coupling constant of 35 μeV within an optical cavity with energies of 20 to 140 μeV, the quality factor is in the range of 4930 to 5060.

[1]. C. Kurtsiefer, S. Mayer, P. Zarda and H. Weinfurter, “Stable solid-state source of single photons”, Phys. Rev. Lett. 85, 290, 2000.
[2]. Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, M. Pepper, “Electrically driven single-photon source”, Science, 295, 102, 2002.
[3]. F. hakimian, M. R. Shayesteh, M. R. Moslemi, “Proposal for Modeling of FWM Efficiency of QD-SOA Based on the Pump/Probe Measurement Technique”, journal of optoelectronical nanostructures, 5 4, 49-66, 2020.
[4]. F. hakimian, M. R. Shayesteh, M. R. Moslemi, “A Proposal for a New Method of Modeling of the Quantum Dot Semiconductor Optical Amplifiers”, journal of optoelectronical nanostructures, 4, 3, 1-16, 2019.
[5]. R. Pourtajabadi, M. Nayeri, “A Novel Design of a Multi-layer 2:4 Decoder using Quantum- Dot Cellular Automata”, journal of optoelectronical nanostructures 4, 1, 39-50, 2019.
[6]. H. Bahramiyan, S. Bagheri, “Linear and nonlinear optical properties of a modified Gaussian quantum dot: pressure, temperature and impurity effect”, journal of optoelectronical nanostructures 3, 3, 79-100, 2018.
[7]. M. R. Mohebbifar, M. Zohrabi, “Influence of Grating Parameters on the Field Enhancement of an Optical Antenna under Laser Irradiation”, journal of optoelectronical nanostructures, 4, 4, 65-80, 2019.
[8]. U. Badilli, F. Mollarasouli, N. K. Bakirhan, Y. Ozkan, S. A. Ozkan, “Role of quantum dots in pharmaceutical and biomedical analysis, and its application in drug delivery”, Trends Analyt Chem, 131, 116013, 2020.
[9]. A. Das, S. R. Mondal, G. Palai, “Realization of graphene based quantum dot solar cell through the principle of photonics”, Optik, 221, 165283, 2020.
[10]. S. Manivannan,  K. Ponnuchamy, “Quantum dots as a promising agent to combat COVID‐19”, Appl Organomet Chem. , 34, 10, 2020.
[11]. D. Press, S. Gotzinger, S. Reitzenstein, C. Hofmann, A. Loffler, M. Kamp, A. Forchel, Y. Yamamoto, “Photon Antibunching from a Single Quantum-Dot-Microcavity System in the Strong Coupling Regime”, Phys. Rev. Lett., 98, 117402, 2007.
[12]. J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel, “Strong coupling in a single quantum dot - semiconductor microcavity system”, Nature, 432, 197-200, 2004.
[13]. J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, V. Thierry-Mieg, “Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity”, Physical Review Letters, 81 5, 1110-1113, 1998.
[14]. G. Cui, M. G. Raymer, “Quantum efficiency of single-photon sources in the cavity-QED strong-coupling regime”, Optics Express 13, 24, 9660-9665, 2005.
[15]. S. Strauf, F. Jahnke, “Single quantum dot nanolaser”, Laser Photonics Rev., 5, 5, 607–633, 2011
[16]. Hai-Zhi Song, Wei Zhang, Li-Bo Yu, Zhiming M. Wang, “Micropillar Cavity Design for 1.55-μm Quantum-Dot Single-Photon Sources”, Journal of Electronic Science and Technology, 17, 3, 221-230, 2019
[17]. N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. Rev. vol. 74, 145–195, 2002
[18]. E. Knill, R. Laflamme, G. J. Milburn, “A scheme for efficient quantum computation with linear optics”, Nature 409, 46–52, 2001.
[19]. Y. Yamamoto, F. Tassone, H. Cao,  “Semiconductor Cavity Quantum Electrodynamics,” Berlin, Germany: Springer-Verlag, 56-63, 2000
[20]. R. J. Thompson, G. Rempe, H. J. Kimble, “Observation of normal-mode splitting for an atom in an optical cavity”, Phys. Rev. Lett., 68, 1132, 1991.
[21]. J. D. Serna, “Coherent Manipulation of Multilevel Atoms for Quantum Information Processing”, Ph.D. dissertation, University of Arkansas, 2-5, 2005.