تهیه و بررسی خواص پلی آمید/ نانوکامپوزیتهای رنگی حاوی گروه آزو تقویت شده با نانوذرات منیزیم هیدروکسید

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه آموزشی شیمی آلی و پلیمر، دانشکده شیمی، دانشگاه خوارزمی

2 گروه شیمی آلی، دانشکده شیمی، دانشگاه مازندران، بابلسر، ایران

چکیده

در این پژوهش، نانوچندسازه‌های رنگی حاوی گروه عاملی آزو با زمینه پلی آمیدی (PA) تقویت شده با نانوذرات اصلاح سطح شده منیزیم هیدروکسید تهیه شدند و ساختار و ویژگی آنها مورد بررسی قرار گرفت. PAبا واکنش بسپارش مستقیم تهیه شد و ساختار آن توسط روش‌های اسپکتروسکوپی فروسرخ تبدیل فوریه(FTIR) و رزونانس مغناطیسی هسته (NMR) تایید شد. بررسی آزمون حلالیت نشان داد، پلی آمید تهیه شده در حلالهای آپروتیک قطبی مانند دی متیل فرمامید (DMF) در دمای محیط محلول است. نانوذرات منیزیم هیدروکسید اصلاح شده (MMH) طی دو مرحله شامل واکنش هم رسوبی و سپس، اصلاح سطح در حضور دی اسید آزو تهیه و ساختار آن با FTIR و الگوی پراش پرتو ایکس تایید شد. نانوچندسازه‌ها (PAN) به روش محلول و قالب ریزی توسط پلی آمید و درصدهای متفاوت از MMH در DMF تهیه شدند. نتایج حاصل از الگوی پراش پرتو X و میکروسکوپ روبشی الکترونی گسیل میدان (FE-SEM) توزیع یکنواخت مناسبی از نانوذرات را در زمینه PA نشان داد. رفتار گرمایی PA و PAN توسط روش‌های آنالیز وزن سنجی حرارتی (TGA) در اتمسفر نیتروژن مورد بررسی قرار گرفت. بر اساس نتایج TGA، نانوذرات منیزیم هیدروکسید اصلاح شده با ترکیب آلی اثر مثبتی در بهبود ویژگی گرمایی پلی آمید داشته است. با افزایش 8 درصد وزنی از نانوذرات اصلاح شده به پلی آمید، دمای 5 و 10 درصد تخریب وزنی بسپار 30 درجه سانتی گراد افزایش نشان داد.
 

کلیدواژه‌ها


عنوان مقاله [English]

Synthesis and characterization of self-coloured polyamide nanocomposites containing azo group reinforced with magnesium hydroxide nanoparticles

نویسندگان [English]

  • Mohsen Hajibeygi 1
  • saeed Shafee navid 2
1 Department of organic chemistry, Faculty of Chem. Kharazmi University
2
چکیده [English]

In this work, self-coloured nanocomposites containing Azo functional groups based on polyamide (PA) reinfoced with surface modified magnesium hydroxide nanoparticles were prepared, and their structure and properties were investigated. PA was synthesized by direct polycondensation and its structure confirmed by FTIR and NMR. The solubility test results indicated that the synthesized PA easily dissolved in aprotic organic solvents such as dimethyl formamide (DMF) at room temperature. Modified magnesium hydroxide nanoparticles (MMH) were prepared via two steps including coprecipitation reaction and then surface modification in the presence of azo dicarboxylic acid. Nanocomposites (PAN) were prepared with PA and appropriate amounts of MMH via casting solution method. The results of XRD and FE-SEM indicated that nanoparticles were uniformly dispersed in the PA matrix. Thermal properties of PA and related nanocomposites were studied by using thermogravimetric analysis (TGA). According to TGA results, MMH had a good effect on the thermal stability of polyamide. With addition of 8 mass% of modified nanoparticles in the PA matrix, T5 and T10 values increased 30ᵒC.

کلیدواژه‌ها [English]

  • Polyamide
  • nanocomposite
  • Mg(OH)2
  • thermal stability
[1].       K. G. Yagerand, C. J. Barrett, “Novel photo-switching using azobenzene functional materials,” Journal of Photochemistry and Photobiology A: Chemistry, 182, 250-261, 2006.
[2].       C. H. Ho, K. N. Yang, S. N. Lee, “Mechanistic study of trans⇆cis isomerization of the substituted azobenzene moiety bound on a liquid‐crystalline polymer, “ Journal of Polymer Science Part A: Polymer Chemistry, 39, 2296-2307, 2001.
[3].       Y. He, “Synthesis, self-assembly and photoinduced surface-relief gratings of a polyacrylate-based Azo polyelectrolyte.Optical materials,” 26,  89-93, 2004.
[4].       S. L. Oscurato, “From nanoscopic to macroscopic photo-driven motion in azobenzene-containing materials,” Nanophotonics. 7, 1387-1422, 2018.
[5].       O. M. Wani, H. Zeng, A. Priimagi, “A light-driven artificial flytrap.Nature communications,” 8, 1-7, 2017.
[6].       M. Hajibeygi, “Novel poly (amide-azomethine) nanocomposites reinforced with polyacrylic acid-co-2-acrylamido-2-methylpropanesulfonic acid modified LDH: Synthesis and properties.Applied Clay Science,” 157, 165-176, 2018.
[7].       K. Faghihi, M. Hagibeygi, “New aromatic polyamide with azo and phosphine oxide groups in the main chain.Turkish Journal of Chemistry,” 31, 65-73, 2007.
[8].       L. Wang, Q. Zhu, Y. Bai, “Synthesis and characterizations of a series of water soluble polyamides and their micellization behavior,” Polymer, 179, 121634, 2019.
[9].       D. Feldman, “Polyamide nanocomposites,” Journal of Macromolecular Science, Part A, 54, 255-262, 2017.
[10].     I. González, J. Eguiazábal, J. Nazábal, “Rubber-toughened polyamide 6/clay nanocomposites,” Composites Science and Technology, 66, 1833-1843, 2006.
[11].     K. E. O’Harra, “Synthesis and Performance of Aromatic Polyamide Ionenes as Gas Separation Membranes,” Membranes. 10, 51-58, 2020.
[12].     M. Hajibeygi, M. Fardi, M. Shabanian, “New nanocomposites based on polyamide containing imine groups reinforced with functionalized polyethyleneimine‐modified ZnO nanoparticles; fabrication, characterization and lead ion adsorption studies,” Polymer Composites. 40, 2602-2616, 2019.
[13].     K. K. Jena, R. Narayan, K. Raju, “Surface functionalized zinc oxide (ZnO) nanoparticle filled organic–inorganic hybrid materials with enhanced thermo-mechanical properties,” Progress in Organic Coatings, 89, 82-90, 2015.
[14].     K. Zhen, “Preparation and thermal properties of silica‐graft acrylonitrile‐butadiene‐styrene nanocomposites,” Polymer Engineering & Science. 44, 1077-1082, 2004.
[15].     B. Wetzel, F. Haupert, M. Q. Zhang, “Epoxy nanocomposites with high mechanical and tribological performance,” Composites Science and Technology. 63, 2055-2067, 2003.
[16].     M. Shabanian, M. Hajibeygi, “Magnetic heat resistant poly (amide–imide) nanocomposite derived from bisphenol A: Synthesis and properties,” Polymer composites, 34, 1682-1689, 2013.
[17].     H. Li, “Synthesis of highly efficient C-doped TiO2 photocatalyst and its photo-generated charge-transfer properties,” Journal of Colloid and Interface Science, 354, 175-180, 2011.
[18].     J. Zou, “Preparation and characters of hyperbranched polyester‐based organic‐inorganic hybrid material compared with linear polyester,” Polymers for advanced technologies, 16, 55-60, 2005.
[19].     M. Hajibeygi, M. Shabanian, and M. Omidi-Ghallemohamadi, “Development of new acid-imide modified Mg-Al/LDH reinforced semi-crystalline poly (amide-imide) containing naphthalene ring; study on thermal stability and optical properties,” Applied Clay Science, 139, 9-19, 2017.
[20].     J. Zou, W. Shi, X. Hong, “Characterization and properties of a novel organic–inorganic hybrid based on hyperbranched aliphatic polyester prepared via sol-gel process,” Composites Part A: Applied Science and Manufacturing, 36, 631-637, 2005.
[21].     G. Ragosta, “Epoxy-silica particulate nanocomposites: chemical interactions, reinforcement and fracture toughness,” Polymer, 46, 10506-10516, 2005.
[22].     T. T. Xu, “Synthesis of ZnO-loaded Co0. 85Se nanocomposites and their enhanced performance for decomposition of hydrazine hydrate and catalytic hydrogenation of p-nitrophenol,” Applied Catalysis A: General, 515, 83-90, 2016.
[23].     A. B. Radwan, “Corrosion protection of electrospun PVDF–ZnO superhydrophobic coating,” Surface and Coatings Technology, 289, 136-143, 2016.
[24].     Z. Dang, “Dielectric properties and morphologies of composites filled with whisker and nanosized zinc oxide,” Materials research bulletin, 38, 499-507, 2003.
[25].     Y. Zare, I. Shabani, “Polymer/metal nanocomposites for biomedical applications,” Materials Science and Engineering: C, 60, 195-203, 2016.
[26].     G. Lofrano, “Polymer functionalized nanocomposites for metals removal from water and wastewater: an overview,” Water research, 92, 22-37, 2016.
[27].     P. Z. Ray, H. J. Shipley, “Inorganic nano-adsorbents for the removal of heavy metals and arsenic: a review,” RSC Advances, 5, 29885-29907, 2015.
[28].     P. P. Naidu, “Effect of g‐C3N4 nanofiller as filler on mechanical properties of multidirectional glass fiber epoxy hybrid composites,” Journal of Applied Polymer Science, 137, 48413, 2020.
[29].     D. Lennerová, F. Kovanda, J. Brožek, “Preparation of Mg–Al layered double hydroxide/polyamide 6 nanocomposites using Mg–Al–taurate LDH as nanofiller,” Applied Clay Science, 114, 265-272, 2015.
[30].     S. Kamerling, A. K. Schlarb, “Magnesium hydroxide—A new lever for increasing the performance and reliability of PA66/steel tribosystems,” Tribology International, 147, 106271, 2020.
[31].     H. Balakrishnan, “On the use of magnesium hydroxide towards halogen-free flame-retarded polyamide-6/polypropylene blends,” Polymer degradation and stability, 97, 1447-1457, 2012.
[32].     R. Arjmandi, “Enhanced flame retardancy, thermal and mechanical properties of hybrid magnesium hydroxide/montmorillonite reinforced polyamide 6/polypropylene nanocomposites,” Fibers and Polymers, 19, 914-926, 2018.
[33].     N. Yamazaki, M. Matsumoto, F. Higashi, “Studies on reactions of the N‐phosphonium salts of pyridines. XIV. Wholly aromatic polyamides by the direct polycondensation reaction by using phosphites in the presence of metal salts,” Journal of Polymer Science: Polymer Chemistry Edition, 13, 1373-1380, 1975.
[34].     H. M. Naguib, X. H. Zhang, “Advanced recycled polyester based on PET and oleic acid,” Polymer testing, 69, 450-455, 2018.
[35].     T. Liu, “Magnesium hydroxide nanoparticles grafted by DOPO and its flame retardancy in ethylene‐vinyl acetate copolymers,” Journal of Applied Polymer Science, 138, 49607, 2021.