بررسی ترموسینتیکی جذب سطحی وانادیم از پساب‌های صنعتی با استفاده از جاذب نانوچندسازه منیزیم اکسید/ کیتوسان

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه شیمی، دانشگاه آزاد واحد ماهشهر، ماهشهر، ایران

چکیده

هدف از این بررسی، حذف یون وانادیم از پساب­های صنعتی با استفاده ازجاذب نانوچندسازه منیزیم اکسید/ کیتوسان و همچنین، بررسی شرایط بهینه pH، زمان تماس، مقدار جاذب، دما در این جذب است. مطالعات جذب در یک سیستم ناپیوسته انجام شد. همچنین، تاثیر پارامترهای متفاوت مانند pH (2-11)،زمان تماس(15-300 دقیقه) مقدار جاذب(1-6 میلی گرم در صد میلی لیتر)، غلظت اولیه آلاینده(5-30   )، دما بررسی شد. ریخت شناسی کیتوسان/ منیزیم اکسید به وسیله FTIR و XRD و اندازه نانو ذرات و توزیع آن با استفاده از FESEM مورد مطالعه قرار گرفت. بررسی همدما جذب نشان داد که همدما فرندلیچ (R2=0.97) تطابق بهتری نسبت به همدما لانگمویر دارد. سینتیک فرایند جذب سطحی مطالعه شد، جذب یون وانادیم بر جاذب نانوچندسازه منیزیم اکسید/ کیتوسان شبه درجه دوم به دست  آمد. کمیت های ترمودینامیکی، آنتالپی برابر85/2- کیلو ژول بر مول، آنتروپی برابر 0019/0 کیلو ژول بر کلوین و انرژی آزاد گیبس برابر 4/03-کیلوژول بر مول محاسبه شدند. نتایج مطالعه نشان داد، جاذب نانوچندسازه منیزیم اکسید/ کیتوسان برای جذب سطحی یون وانادیم، یک جاذب مناسب است.

کلیدواژه‌ها


عنوان مقاله [English]

Thermo- kinetic investigation of vanadium adsorption from industrial wastewater using nano Composite of magnesium oxide/chitosan adsorbent

نویسندگان [English]

  • nabieh farhami
  • maryam derakhshandeh
Department of Chemistry, Mahshahr Branch, Islamic Azad University, Mahshahr, Iran
چکیده [English]

The main objective of this study is Vanadium ion removal from industrial wastewater by Magnesium Oxide/chitosan nanocomposite and also, the investigation the optimal conditions of pH, agitation time, adsorbent dose and temperature. Morphology of Chitosan/ magnesium oxide nanocomposite and nanoparticle size and its distribution were studied by FTIR, XRD and FESEM, respectively. The adsorption studies performed in a batch system and the effect of various operating parameters such as solution pH (2-11), agitation time (15-300 min), adsorbent dose (1-6 mg/100ml) and initial concentration of Vanadium (5-30 ppm) was investigated. Freundlich isotherm (R2=0.97) displayed a better fitting model than Langmuir isotherm. The adsorption kinetics results showed that nanocomposite adsorption process was well-described by pseudo-second-order kinetic model. Thermodynamic parameters of adsorption process such as enthalpy, entropy and Gibbs free energy were also calculated that their values obtained 2.85 Kj/mol, 0.0019 Kj/mol.K and -4.03Kj/mol, respectively. The results of this study showed that Chitosan/ magnesium oxide nanocomposite is a suitable adsorbent for the adsorption of vanadium.

[1] Ba. Seydou, K. Ennaciri , Ab. Yaacoubi, A. Alagui, A. Bacaoui,  “Activated carbon from olive Wastes as an adsorbent for chromium ions removal, ” Iranian journal of chemistry and chemical engineering, 37, 107-123, 2018.
[2] C. Namasivayam, D. Sangeetha, D, “Removal and recovery of vanadium (v) by adsorption on to ZnCl2 activated carbon,”   Adsorption, 12, 103-117, 2006.
[3] X. Chunhua, Y. Caiping, “Adsorption behavior of Cu (II) in aqueous solutions by SQD-85 resin,” Iranian journal of chemistry and chemical engineering, 32, 57-66, 2013.
[4] X. Chunhua, Y. Caiping, “Adsorption behavior of MWAR toward Gd (III) in aqueous solution,” Iranian journal of chemistry and chemical engineering, 29, 59-66, 2010.
[5] M. Dehvari, M. H. Ehrampoush, M. T. Ghaneian, B. Jamshidi, M. Tabatabaee, “Adsorption kinetics and equilibrium studies of reactive red 198 dye by cuttlefish bone powder,” Iranian journal of chemistry and chemical engineering , 36, 143-151, 2017.
[6] J. Guzman, I. Sauced, R. Navarro, J. Revilla, E. Guibal, ” Vanadium interactions with chitson: influence of polymer protonation and metal speciation,” Langmuir, 18,1567-1573, 2002.
[7] H. Modarress, L. Allafkari, “Adsorption of bovine serum albumin onto hydroxylapatite: theoretical modeling and measurements,” Iranian journal of chemistry and chemical engineering, 29, 125-133, 2010.
[8] Sh. Ghanbari Pakdehi, M. Alipour, “Adsorption of Cr (III) and Mg (II) from hydrogen peroxide aqueous solution by amberlite IR-120 synthetic Rresin,” Iranian journal of chemistry and chemical engineering, 32, 49-55, 2013.
[9] M. Ishaq, F. Javed, I. Amad, H. Ullah, F. Hadi, S. Sultan, “Adsorption of crystal violet dye from aqueous solutions onto low-cost untreated and NaOH treated almond shell,” Iranian journal of chemistry and chemical engineering ,  35, 97-106, 2016.
[10] Ch. Chen, T. Cheng, Y. Shi, Y. Tian, “Adsorption of Cu(II) from aqueous solution on fly ash based linde F (K) zeolite, ” Iranian journal of chemistry and chemical engineering, 33, 29-35, 2014.
[11] Th. Matthews, S. Majoni, B. Nyoni, B. Naidoo, H. Chiririwa, “Adsorption of lead and copper by acarbon black and sodium bentonite composite material: study on adsorption isotherms and kinetics, ” Iranian journal of chemistry and chemical engineering, 38, 101-109, 2019.
[12] Sh. Ghanbari Pakdehi, “Adsorptive removal of Al, Zn, Fe, Cr and Pb from hydrogen peroxide solution by IR-120 cation exchange resin, ”  Iranian journal of chemistry and chemical engineering , 35, 75-84, 2016.
[13] C. Namasivayam, D. Sangeetha, “Removal and recovery of vanadium (v) by adsorption onto ZnCl2 activated carbon,” Journal of the international adsorption scociety, 12, 103-117, 2006.
[14] F. Mostafanejad1, N. Sajjadi1, R. Marandi, M. Zaeimdar, B. Majidi, “Study of the effect of different Physico-Chemical factors on the mechanism of Crystal Violet adsorption by carbon nanotubes and grapheme oxide and their recyclability, ” Journal of  nanomeghyas, 7, 122-133, 2021.