مطالعه نظری برخی مشتقات سیکلوپنتنی و سیکلوهگزنی نانوفولرن‌های C60 و C20 به عنوان گیرنده الکترون برای پلیمر پلی هگزیل تیوفن (P3HT) در سلول‌های فتوولتائیک آلی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه شیمی، دانشکده علوم پایه، دانشگاه آیت الله بروجردی، بروجرد ، ایران

2 گروه شیمی، دانشکده علوم پایه، دانشگاه آزاد اسلامی واحد اهر، اهر، ایران

چکیده

سلول­های فتوولتائیک آلی (OPV) دارای یک بخش فعال هستند که از دو قسمت دهنده و گیرنده­ الکترون ساخته شده است. در این کار، بسپار پلی­هگزیل تیوفن (P3HT) به عنوان دهنده و برخی مشتقات سیکلوپنتنی و سیکلوهگزنی نانوفولرن­های C60 و C20 به عنوان گیرنده­ الکترون در نظر گرفته شده­اند که با استفاده از نرم­افزار گوسین 09 و به روش نظریه تابعی چگالی (DFT) در سطح نظری B3LYP/6-31G (d, p) مورد بررسی قرار گرفتند. پس از بهینه­ سازی مولکول­های مورد نظر، با بررسی سهم اوربیتال­های s و p و همچنین، انرژی رزونانس انتقال  π→π* مولکول­ها، برخی توصیفگرهای کوانتومی مانند انرژی هومو (EHOMO) و لومو (ELUMO)، گاف انرژی (Eg)، پتانسیل شیمیایی (μ)، سختی شیمیایی (η)، الکتروفیلیسیتی (ω) و ماکزیمم انتقال بار (∆Nmax) محاسبه شد. مقدار ولتاژ مدار باز (Voc) که یکی از مهمترین پارامترهای نشان دهنده­ بازده­ یک سلول خورشیدی (η) است، برای مولکول­های مورد مطالعه به کمک نتایج حاصل از خروجی­های گوسین به دست آمد. نتایج نشان می­دهد که مشتقات سیکلوپنتنی و سیکلوهگزنی نانوفولرن­های C60 و C20 می­توانند به عنوان گیرنده در سلول­های فتوولتائیک کارآیی مطلوبی داشته باشند، لیکن استفاده از مشتقات سیکلوپنتنی در سلول­های خورشیدی بازده­ بیشتری نسبت به مشتقات سیکلوهگزنی خواهند داشت.

کلیدواژه‌ها


عنوان مقاله [English]

Theoretical Study of Some Cyclopentene and Cyclohexene Derivatives of C60 and C20 Nano Fullerenes as Electron Receptors for Polyhexyl Thiophene (P3HT) Polymer in Organic Photovoltaic

نویسندگان [English]

  • m.h. fekri 1
  • L. Aryafar 1
  • m. razavimehr 1
  • Z javanshir 2
1 Ayatollah Boroujerdi
2 Azad Ahar
چکیده [English]

Organic photovoltaic cells (OPV) have an active part that is inclusive two parts; electron donor and electron receptor. In this work, Polyhexyl thiophene (P3HT) polymer is considered as an electron donor and some cyclopentene and cyclohexene derivatives of C60 and C20 nanofullerens as electron receptors, that using Gaussian 09 software and density functional theory (DFT) at B3LYP/6-31G (d, p) level are evaluated. After optimization of the structures, the contribution of s and p orbitals and also, energy resonance  π→π* in molecules, some of quantum descriptors such as HOMO and LUMO energy, energy gap (Eg), chemical potential (μ), chemical hardness (η), electrophilicity index (ω) and maximum charge transfer (∆Nmax) were performed. The value of the open circuit voltage (Voc), which is one of the most important parameters indicating efficiency of a solar cell (η), was obtained for the studied molecules with Gaussian outputs. Results show that cyclopentene and cyclohexane derivatives of C60 and C20 nanofullerens can have be desired efficiency as receptors in photovoltaic cells. However, the cyclopentene derivatives will be more effective than cyclohexene derivatives in solar cells.

[1]. S. Günes, H. Neugebauer, N.S. Sariciftci, “Conjugated polymer-based organic solarcells,” Chem. Rev., 107, 1324–1338, 2007.
[2]. M.R. Lee, R.D. Eckert, K. Forberich, G. Dennler, C.J. Brabec, R.A. Gaudiana, “Solarpower wires based on organic photovoltaic materials,”  Science, 324,) 232–235, 2009.
 [3]. N.A. Matchanov, A.M. Mirzabaev, B.R. Umarov, M.A. Malikov, A.U. Kamoliddinov, K.A. Bobozhonov, “Experimental studies of the monocrystal and polycrystal characteristics of silicon photovoltaic modules under environmental conditions of Tashkent,” Solar Power Plants and Their Application, 53, 23-30, 2017.
[4]. M.M. Lee, J. Teuscher, T. Miyasaka, N. Murakami, H.J. Snaith, “Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites,” Science,  338, 643−647, 2012. [5]. Y. Bai, I. Mora-Sero, F. De Angelis, “Titanium Dioxide Nanomaterial’s for Photovoltaic Applications,” Chem. Rev., 114, 10095−10130, 2014. 
[6]. H. Zhu, J. Wei, K. Wang, D. Wu, “Applications of carbon materials in photovoltaic solar cells,” Solar Energy Materials and Solar Cells, 93(9), 1461-1470, 2009.
[7]. E. Salima, S.R. Bobbarab, A. Orabya, J.M. Nunzib, “Copper oxide nanoparticle doped bulk-heterojunction photovoltaic devices,” Synthetic Metals, 252, 21-28, 2019.
[8]. S. Rafiquea, S.M. Abdullahb, N. Badieia, J. McGettricka, K.T. Laia, N.A. Roslanb, H.K. H. Leea, W.C. Tsoia, L. Lia, “An insight into the air stability of the benchmark polymer: fullerene photovoltaic films and devices: A comparative study,” Organic Electronics, 76, 105456-105467, 2020.
[9]. H.R. Liu, S.H. Li, L.L. Deng, Z.Y. Wang, Zh. Xing, X. Rong, H. R. Tian, X. Li, S.Y. Xie, R.B. Huang, L.S. Zheng, “Pyridine-Functionalized Fullerene Electron Transport Layer for Efficient Planar Perovskite Solar Cells,” ACS Applied Materials & Interfaces, 11 (27), 23982-23989, 2019.
[10]. Q. Kang, Q. Wang, C. An, Ch. He, B. Xu, J. Hou, “Significant influence of doping effect on photovoltaic performance of efficient fullerene-free polymer solar cells,” Journal of Energy Chemistry, 43, 40-46, 2020.
[11]. O.S. Kim, J.B. Kwon, S.W. Kim, B. Xu, K.H. Seo, C.E. Park, W.J. Do, J.H. Bae, S.W. Kang, “Effect of PVP-Capped ZnO Nanoparticles with Enhanced Charge Transport on the Performance of P3HT/PCBM Polymer Solar Cells,” Polymers, 11, 1818-1828, 2019.
[12]. B. Xua, G. Sai-Anandb, G.E. Unnib, H.M. Jeonga, J.S. Kima, S.W. Kima, J.B. Kwona, J.H. Baea, S.W. Kang, “Pyridine-based additive optimized P3HT:PC61BM nanomorphology forimproved performance and stability in polymer solar cells,” Applied Surface Science, 484, 825-834, 2019.
[13]. Z. El Jouad, E.M. El-Menyawy, G. Louarn, L. Arzel, M. Morsli, M. Addou, J.C. Bernède, L. Cattinb, “The effect of the band structure on the Voc value of ternary planarheterojunction organic solar cells based on pentacene, boronsubphthalocyanine chloride and different electron acceptors,” Journal of Physics and Chemistry of Solids 136, 109142-109150, 2020.
[14]. A. Laaksonen, Y. Tu, “Methods of incorporating quantum mechanical calculations into molecular dynamics simulations,” Balbuena, 1999.
[15]. E.G. Lewars, “Computational chemistry: introduction to the theory and applications of molecular and quantum mechanics,” Springer, 2016.
[16]. M.H. Fekri, R. Bazvand, M. Solymani, M. Razavi Mehr, “Adsorption of Metronidazole drug on the surface of nano fullerene C60 doped with Si, B and Al: A DFT Study,” International Journal of Nano Dimension, 11(4), 346-354, 2020.
[17]. M.H. Fekri, A. Omrani, S. Jamehbozorgi, M. Razavi Mehr, “Study of Electrochemical and Electronical Properties on the Some Schiff Base Ni Complexes in DMSO Solvent by Computational Methods,” Advanced Journal of Chemistry-Section A, 2(1), 14-20, 2019.
[18]. M.H. Fekri, R. Bazvand, M. Razavi Mehr, M.  Solymani, “Adsorption behavior, electronical and thermodynamic properties of ornidazole drug interaction with C60 fullerene doped with Si, B and Al: A quantum mechanical simulation,” Physical Chemistry Research, 9(1), 151-164, 2021.
[19]. Z. khajehali, H. Shamlouei, “A Theoretical Study of the Structural, Electrical and 6) Nanoclusters-(n = 120@Cn Optical Properties of Be,” Journal of Research on Many-body Systems. 9(3), 121-134, 2019.
[20]. H.T. Yang, W.L. Ren, C.B. Miao, C. P. Dong, Y. Yang, H.T. Xi, Q. Meng, Y. Jiang, X.Q. Sun, “DMAP-Catalyzed [3 + 2] and [4 +2] Cycloaddition Reactions between [60]Fullerene and Unmodified Morita–Baylis–Hillman Adducts in the Presence of Ac2O,”  J. Org. Chem., 78, 1163−1170, 2013.
[21]. J.Y. Kim, S.H. Kim, H. Lee, K. Lee, W. Ma, X. Gong, A.J. Heeger, “New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer,” Adv. Mater., 18, 572-576, 2006.
[22]. C.L. Chochos, A. Katsouras, N. Gasparini, C. Koulogiannis, T. Ameri, C.J. Brabec, A. Avgeropoulos, “Rational Design of High-Performance Wide-Bandgap (≈2 eV) Polymer Semiconductors as Electron Donors in Organic Photovoltaics Exhibiting High Open Circuit Voltages (≈1 V),” Macromolecular Rapid Communications, 1600614-1600624, 2017.
[23]. E.F. Oliveira, F.C. Lavarda, “Molecular design of new P3HT derivatives: Adjusting electronic energy levels for blends with PCBM,” Materials Chemistry and Physics, 148, 923-932, 2014.
[24]. P. Kumar, “Organic Solar Cells: Device Physics, Processing, Degradation, and Prevention,” CRC Press, 2016.
[25].  T. Ameri, P. Khoram, T. Heum¨uller, D. Baran, F. Machui, A. Troeger, V. Sgobba, D.M. Guldi, M. Halik, S.  Rathgeber, U.  Scherff, C.J. Brabecab, “Morphology analysis of near IR sensitized polymer/fullerene organic solar cells by implementing low band gap heteroanalogue C-/Si-PCPDTBT,” Journal of Materials Chemistry A, 2, 19461-19473, 2014.
[26]. Y. Yamane, K. Sugawara, N. Nakamura, Sh. Hayase, T. Nokami, T. Itoh, “Development of  n‑Type Semiconductor Based on Cyclopentene- or Cyclohexene-Fused [C60]‑Fullerene Derivatives,” J. Org. Chem., 80, 4638−4649, 2015.