بررسی اثر استیک اسید بر بازده سنتز نانوذراتTiO2 به روش سل-ژل و بررسی ویژگی فتوکاتالیستی آن در تهیه سطوح خودتمیزشونده

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی شیمی، دانشگاه صنعتی سهند

چکیده

در این پژوهش، به منظور تولید پوشش­های نانوساختار خودتمیزشونده، ابتدا سل پایدار TiO2 با استفاده از استیک اسید به عنوان بهبود دهنده تهیه شد. پس از سنتز سل­ها خصوصیات و ویژگیهای ساختاری آن تعیین شد. نتایج حاصل از آنالیز پراش پرتو X نشان می­دهد که نمونه­های سنتز شده فاز آناتاز بوده و ابعاد بلور­های سازنده آن­ها،  nm 22-10 است. همچنین، سطح ویژه نمونه­ سنتز شده با نیتریک اسید معادل m2/g 65/93 اندازه‌گیری شد. بنابراین، استفاده از استیک اسید به منظور افزایش بازده سنتز و ژلی شدن که از لحاظ بازده صنعتی مقرون به صرفه­تر است، نتایج خوبی در پی داشته است. سپس، سل­­ های سنتز شده به صورت فیلم­های نازک TiO2­ به روش اسپری سرد و با گاز نیتروژن بر سرامیک پوشش داده شد که کاهش زاویه تماس از حدود 4/94 به 4/8 درجه، نشان دهنده­ ایجاد سطوح فوق آب­دوست است. در نهایت، ویژگی فتوکاتالیستی سطوح پوشش­ داده شده در تخریب فرمیک اسید تحت نور مرئی مورد بررسی قرار گرفته است. همچنین، کلسینه کردن سطوح پوشش­ داده شده در دمای450 و C°650 خاصیت فتوکاتالیستی را به طور چشمگیری افزایش داده است.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the effect of acetic acid on the synthesis yield of TiO2 nanoparticles by sol-gel method and evaluation of their photocatalytic property in preparing self-cleaning surfaces

نویسندگان [English]

  • z. sayyar
  • G. shahrouzi
  • a. babaluo
Faculty of Chemical Engineering, Sahand University of Technology
چکیده [English]

In this research, a preliminarily stable sol of titanium dioxide was synthesized by the addition of acetic acid as a promoter in order to increase the yield of TiO2 synthesis. The formation of active anatase phase was confirmed by X-ray powder diffraction analysis and the crystal size of 10–22 nm was obtained. The specific surface area found to be 93.65 m2/g for the synthesized samples. Hereafter, the synthesized TiO2 sols were coated, as a thin layer of nanostructured TiO2, on the surface of ceramic via the cold spray method. The contact angle measurement of the coated surfaces exhibited that the use of these coatings has led to the formation of super-hydrophilic surfaces. Eventually, the photocatalytic activity of the coated samples was examined by the degradation of formic acid under the visible light. It was shown that the calcination of coated surfaces can improve the photocatalytic activity of the coated samples. Consequently, the use of acid acetic as a promoter in the synthesis of TiO2 nanoparticles can significantly improve the photocatalytic properties.

کلیدواژه‌ها [English]

  • TiO2 sol
  • Cold spray
  • Nanostructured coatings
  • Self-Cleaning
  • Photocatalytic activity
[1] S. Park, J. Park, J. Heo, B. Y. Hong, and J. Hong, "Growth behaviors and biocidal properties of titanium dioxide films depending on nucleation duration in liquid phase deposition," Applied Surface Science, 425, 547-552, 2017.
[2] L. Lopez, W. Daoud, and D. Dutta, "Preparation of large scale photocatalytic TiO­­2 films by the sol–gel process," Surface and Coatings Technology, 205, 251-257, 2010.
[3] J. Rathousky, V. Kalousek, V. Yarovyi, M. Wark, and J. Jirkovsky, "A low-cost procedure for the preparation of mesoporous layers of TiO2 efficient in the environmental clean-up," Journal of Photochemistry and Photobiology A: Chemistry, 216, 126-132, 2010.
[4] K.-W. Weng and Y.-P. Huang, "Preparation of TiO2 Thin Films on Glass Surfaces with Self-cleaning Characteristics for Solar Concentrators," Surface and Coatings Technology, 231, 201-204, 2013.
[5] E. Pipelzadeh, A. A. Babaluo, M. Haghighi, A. Tavakoli, M. V. Derakhshan, and A. K. Behnami, "Silver doping on TiO2 nanoparticles using a sacrificial acid and its photocatalytic performance under medium pressure mercury UV lamp," Chemical Engineering Journal, 155, 660-665, 2009.
[6] E. Quagliarini, F. Bondioli, G. B. Goffredo, A. Licciulli, and P. Munafò, "Self-cleaning materials on Architectural Heritage: Compatibility of photo-induced hydrophilicity of TiO2 coatings on stone surfaces," Journal of Cultural Heritage, 412, 234-245, 2012.
[7] O. Kesmez, H. Erdem Camurlu, E. Burunkaya, and E. Arpaç, "Sol–gel preparation and characterization of anti-reflective and self-cleaning SiO2–TiO2 double-layer nanometric films," Solar Energy Materials and Solar Cells, 93, 1833-1839, 2009.
[8] S. Das, B. Saha, and S. Bhaumik, "Experimental study of nucleate pool boiling heat transfer of water by surface functionalization with crystalline TiO2 nanostructure," Applied Thermal Engineering, 113, 1345-1357, 2017.
[9] A. Forgács, K.N. Moldován, P. Herman, E. Baranyai, I.N. Fábián, G.B. Lente, and J.Z. Kalmár, "Kinetic Model for Hydrolytic Nucleation and Growth of TiO2 Nanoparticles," The Journal of Physical Chemistry C, 122, 19161-19170, 2018.
[10] S. Hamid, R. Dillert, and D. W. Bahnemann, "Photocatalytic reforming of aqueous acetic acid into molecular hydrogen and hydrocarbons over co-catalyst-loaded TiO2: Shifting the product distribution," The Journal of Physical Chemistry C, 122, 12792-12809, 2018.
[11] G.-J. Yang, C.-J. Li, K.-X. Liao, X.-L. He, S. Li, and S.-Q. Fan, "Influence of gas flow during vacuum cold spraying of nano-porous TiO2 film by using strengthened nanostructured powder on performance of dye-sensitized solar cell," Thin Solid Films, 519, 4709-4713, 2011.
[12] V. Bolis, C. Busco, M. Ciarletta, C. Distasi, J. Erriquez, I. Fenoglio, S. Livraghi, and S. Morel, "Hydrophilic/hydrophobic features of TiO­2 nanoparticles as a function of crystal phase, surface area and coating, in relation to their potential toxicity in peripheral nervous system," Journal of colloid and interface science, 369, 28-39, 2012.
[13] D. Macwan, P. N. Dave, and S. Chaturvedi, "A review on nano-TiO2 sol–gel type syntheses and its applications," Journal of materials science, 46, 3669-3686, 2011.
[14] L. Zhao and J.-s. Lian, "Effect of substrate temperature on structural properties and photocatalytic activity of TiO2 thin films," Transactions of Nonferrous Metals Society of China, 17, 772-776, 2007.
[15] Y. Yu, J. Wang, and J. F. Parr, "Preparation and properties of TiO2/fumed silica composite photocatalytic materials," Procedia Engineering, 27, 448-456, 2012.
[16] E. Pipelzadeh, M. Valizadeh-Derakhshan, A. Babaluo, M. Haghighi, and A. Tavakoli, "Formic Acid Decomposition Using Synthesized Ag/TiO2 Nanocomposite in Ethanol-Water Media Under Illumination of Near UV Light," International Journal of Nanoscience and Nanotechnology, 7, 78-86, 2011.
[17] S. Somasundaram, "Novel Approaches To Photoassisted Deposition Of Semiconductors And Nanocomposite Materials," Chemistry & Biochemistry, 409, 101-106, 2007.
[18] V. Augugliaro, V. Loddo, M. Pagliaro, and G. Palmisano, Clean by Light Irradiation: Practical Applications of Supported TiO2. Royal Society of Chemistry, 2010.
[19] J. Livage, M. Henry, and C. Sanchez, "Sol-gel chemistry of transition metal oxides," Progress in Solid State Chemistry, 18, 259-341, 1988.
[20] S. Doeuff, M. Henry, C. Sanchez, and J. Livage, "Hydrolysis of titanium alkoxides: Modification of the molecular precursor by acetic acid," Journal of Non-crystalline solids, 89, 206-216, 1987.
[21] A. A. Silahua-Pavón, "Production of 5-HMF from glucose using TiO2-ZrO2 catalysts: effect of the sol-gel synthesis additive," Catalysis Communications, 129, 705-723, 2019.
[22] T. Zhang, Y. Liu, Y. Rao, X. Li, D. Yuan, S. Tang,  Q. Zhao, "Enhanced photocatalytic activity of TiO2 with acetylene black and persulfate for degradation of tetracycline hydrochloride under visible light", Chemical Engineering Journal,  384 123-350, 2020.
[23] S. Abbad, K. Guergouri, S. Gazaout, S. Djebabra, A. Zertal, R. Barille,  M. Zaabat, "Effect of silver doping on the photocatalytic activity of TiO2 nanopowders synthesized by the sol-gel route", Journal of Environmental Chemical Engineering,  8, 103-718, 2020.
[24] Z. Sayyar, A. A. Babaluo, and J. Rahbar-Shahrouzi, "Kinetic study of formic acid degradation by Fe3+ doped TiO2 self-cleaning nanostructure surfaces prepared by cold spray," Applied Surface Science, 335, 1-10, 2015.
[25] R. A. Spurr and H. Myers, "Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer," Analytical Chemistry, 29, 760-762, 1957.
[26] Y. Masuda and K. Kato, "Synthesis and phase transformation of TiO2 nano-crystals in aqueous solutions," Journal of the Ceramic Society of Japan, 117, 373-376, 2009.
[27] C.-S. Kuo, Y.-H. Tseng, C.-H. Huang, and Y.-Y. Li, "Carbon-containing nano-titania prepared by chemical vapor deposition and its visible-light-responsive photocatalytic activity," Journal of Molecular Catalysis A: Chemical, 270, 93-100, 2007.
[28] I. Ganesh, "Preparation and characterization of Fe-doped TiO2 powders for solar light response and photocatalytic applications," Processing and Application of Ceramics, 6, 21-36, 2012.
[29] D. L. Pavia, G. M. Lampman, G. S. Kriz, J. A. Vyvyan, Introduction to spectroscopy, Cengage Learning, 4th ed., 2008.
[30] R. Dholam, N. Patel, M. Adami, and A. Miotello, "Hydrogen production by photocatalytic water-splitting using Cr-or Fe-doped TiO2 composite thin films photocatalyst," International Journal of Hydrogen Energy, 34, 5337-5346, 2009.