تهیه و بررسی نانوجاذب مغناطیسی جدید برپایه کیتوسان برای حذف رنگ متیلن‌بلو

نوع مقاله : مقاله پژوهشی

نویسندگان

1 'گروه آموزشی علوم پایه دانشگاه پیام نور

2 باشگاه پژوهشگران جوان و نخبگان داشنگاه ازاد واحد سقز

3 آزمایشگاه تحقیقات پلیمر، گروه شیمی، دانشکده علوم پایه، دانشگاه مراغه، مراغه، ایران

4 گروه شیمی، دانشکده شیمی، دانشگاه کاشان، کاشان ایران

5 گروه شیمی، دانشگاه آزاد تبریز

چکیده

رنگ­ها از نظر علمی و عمومی نوع جدیدی از آلودگی­های زیست محیطی هستند که باعث نگرانی در سطح جهانی شده­اند. پژوهش­های زیادی در این زمینه برای حذف رنگ­ها از فاضلاب­ها بر مبنای فرایند جذب سطحی به وسیله نانوجاذب­ها انجام شده است. بر مبنای آن، این پژوهش سنتز نانوجاذب مغناطیسی جدیدی بر پایه هیدروژل بیدهای کیتوسان را برای حذف رنگ کاتیونی متلین بلو از محلول­های آبی را تشریح می­کند. به­طوری که هیدروژل بیدهای کیتوسان با سلولز شبکه­ای شد و در حضور نانوذرات بنتونیت مغناطیسی (Fe3O4/Bent) سنتز شدند. نانوذرات Fe3O4/Bent از سنتز نانوذرات مغناطیسی Fe3O4 در حضور نانورس بنتونیت به روش همرسوبی و درجا بدست آمد. ساختار نانوجاذب­های بدست آمده با روش­های FT-IR، XRD، FE-SEM، TEM و VSM مورد بررسی قرار گرفت. اثر پارامترهای مهم بر فرایند جذب سطحی رنگ متیلن بلو از جمله اثر pH، اثر زمان تماس، اثر غلظت اولیه رنگ و اثر دما بررسی و مطالعه شد. نتایج حاصل از فرایند جذب رنگ متیلن بلو نشان داد که داده­های تجربی بدست آمده بترتیب از مدل سینتیک شبه مرتبه دوم و مدل همدمای لانگمویر مطابقت دارد. همچنین، سنجه­های ترمودینامیکی فرایند جذب (ΔH، ΔS و ΔG)، جذبی گرماگیر و خودبه خودی را نشان داد.

کلیدواژه‌ها


[1] Q. Peng, M. Liu, J. Zheng, C. Zhou, “Adsorption of dyes in aqueous solutions by chitosan–halloysite nanotubes composite hydrogel beads,” Microporous and Mesoporous Materials 201,190-201, 2015.
[2] A. Oussalah, A. Boukerroui, A. Aichour, B. Djellouli, “Cationic and anionic dyes removal by low-cost hybrid alginate/natural bentonite composite beads: adsorption and reusability studies,” International journal of biological macromolecules 124, 854-862, 2019.
[3] P.A. Carneiro, G.A. Umbuzeiro, D.P. Oliveira, M.V.B. Zanoni, “Assessment of water contamination caused by a mutagenic textile effluent/dyehouse effluent bearing disperse dyes,” Journal of hazardous materials 174(1-3), 694-699, 2010.
[4] S. Zinadini, A. Zinatizadeh, M. Rahimi, V. Vatanpour, H. Zangeneh, M. Beygzadeh, “Novel high flux antifouling nanofiltration membranes for dye removal containing carboxymethyl chitosan coated Fe3O4 nanoparticles, ” Desalination 349, 145-154, 2014.
[5] V.S. Mane, P.V. Babu, “Studies on the adsorption of Brilliant Green dye from aqueous solution onto low-cost NaOH treated saw dust,” Desalination 273(2-3), 321-329, 2011.
[6] Y. Ying, P. He, G. Ding, X. Peng, “Ultrafast adsorption and selective desorption of aqueous aromatic dyes by graphene sheets modified by graphene quantum dots,” Nanotechnology 27(24), 245703, 2016.
[7] N. Mohan, N. Balasubramanian, C.A. Basha, “Electrochemical oxidation of textile wastewater and its reuse,” Journal of hazardous materials 147(1-2), 644-651, 2007.
[8] L. Pereira, M. Alves, “Dyes—Environmental Impact and Remediation BT—Environmental Protection Strategies for Sustainable Development. A. Malik and E. Grohmann, Dordrecht:” Springer Netherlands, 2012.
[9] D.-W. Cho, B.-H. Jeon, C.-M. Chon, F.W. Schwartz, Y. Jeong, H. Song, “Magnetic chitosan composite for adsorption of cationic and anionic dyes in aqueous solution,” Journal of Industrial and Engineering Chemistry 28, 60-66, 2015.
[10] L. Fan, C. Luo, X. Li, F. Lu, H. Qiu, M. Sun, “Fabrication of novel magnetic chitosan grafted with graphene oxide to enhance adsorption properties for methyl blue,” Journal of Hazardous Materials 215-216, 272-279, 2012.
[11] S.S. Gupta, K.G. Bhattacharyya, “Adsorption of metal ions by clays and inorganic solids,” Rsc Advances 4(54), 28537-28586, 2014.
[12] B. Yu, B. Yang, G. Li, H. Cong, “Preparation of monodisperse cross-linked poly (glycidyl methacrylate)@ Fe 3 O 4@ diazoresin magnetic microspheres with dye removal property,” Journal of materials science 53(9), 6471-6481, 2018.
[13] H. Xu, S. Zhu, M. Xia, F. Wang, “Rapid and efficient removal of diclofenac sodium from aqueous solution via ternary core-shell CS@ PANI@ LDH composite: Experimental and adsorption mechanism study,” Journal of Hazardous Materials 402, 123815, 2021.
[14] W.W. Ngah, L. Teong, M.M. Hanafiah, “Adsorption of dyes and heavy metal ions by chitosan composites: A review,” Carbohydrate polymers 83(4), 1446-1456, 2011.
[15] M.H. Karimi, G.R. Mahdavinia, B. Massoumi, A. Baghban, M. Saraei, “Ionically crosslinked magnetic chitosan/κ-carrageenan bioadsorbents for removal of anionic eriochrome black-T,” International journal of biological macromolecules 113, 361-375, 2018.
[16] I.O. Saheed, O.W. Da, F.B.M. Suah, Chitosan “Modifications for Adsorption of Pollutants-A review,” Journal of Hazardous Materials, 408, 124889, 2020.
[17] G.R. Mahdavinia, A. Massoudi, A. Baghban, E. Shokri, “Study of adsorption of cationic dye on magnetic kappa-carrageenan/PVA nanocomposite hydrogels,” Journal of Environmental Chemical Engineering 2(3), 1578-1587, 2014.
[18] S. Peng, H. Meng, Y. Ouyang, J. Chang, “Nanoporous magnetic cellulose–chitosan composite microspheres: preparation, characterization, and application for Cu (II) adsorption,” Industrial & Engineering Chemistry Research 53(6), 2106-2113, 2014.
[19] Z. Liu, H. Wang, C. Liu, Y. Jiang, G. Yu, X. Mu, X. Wang, “Magnetic cellulose–chitosan hydrogels prepared from ionic liquids as reusable adsorbent for removal of heavy metal ions,” Chemical Communications 48(59), 7350-7352, 2012.
[20] C.-Y. Chen, J.-C. Chang, A.-H. Chen, “Competitive biosorption of azo dyes from aqueous solution on the templated crosslinked-chitosan nanoparticles,” Journal of Hazardous Materials 185(1), 430-441, 2011.
[21] I. Garnica-Palafox, F. Sánchez-Arévalo, “Influence of natural and synthetic crosslinking reagents on the structural and mechanical properties of chitosan-based hybrid hydrogels,” Carbohydrate polymers 151, 1073-1081, 2016.
[22] V.N. Tirtom, A. Dinçer, S. Becerik, T. Aydemir, A. Çelik, “Comparative adsorption of Ni (II) and Cd (II) ions on epichlorohydrin crosslinked chitosan–clay composite beads in aqueous solution,” Chemical Engineering Journal 197, 379-386, 2012.
[23] N. Li, R. Bai, “Copper adsorption on chitosan–cellulose hydrogel beads: behaviors and mechanisms,” Separation and purification technology 42(3), 237-247, 2005.
[24] A. Dinçer, S. Becerik, T. Aydemir, “Immobilization of tyrosinase on chitosan–clay composite beads,” International Journal of Biological Macromolecules 50(3), 815-820, 2012.
[25] W. Jiang, W. Wang, B. Pan, Q. Zhang, W. Zhang, L. Lv, “Facile fabrication of magnetic chitosan beads of fast kinetics and high capacity for copper removal,” ACS Applied Materials & Interfaces 6(5), 3421-3426, 2014.
[26] K. Barquist, S.C. Larsen, “Chromate adsorption on bifunctional, magnetic zeolite composites,” Microporous and Mesoporous Materials 130(1-3), 197-202, 2010.
[27] M. Soleymani, A. Akbari, G.R. Mahdavinia, “Magnetic PVA/laponite RD hydrogel nanocomposites for adsorption of model protein BSA,” Polymer Bulletin 76(5), 2321-2340, 2019.
[28] M.K. Masud, J. Na, M. Younus, M.S.A. Hossain, Y. Bando, M.J. Shiddiky, Y. Yamauchi, “Superparamagnetic nanoarchitectures for disease-specific biomarker detection,” Chemical Society Reviews 48(24), 5717-5751, 2019.
[29] A.L. Vega-Negron, L. Alamo-Nole, O. Perales-Perez, A.M. Gonzalez-Mederos, C. Jusino-Olivencia, F.R. Roman-Velazquez, “Simultaneous adsorption of cationic and anionic dyes by chitosan/cellulose beads for wastewaters treatment,” International Journal of Environmental Research 12(1), 59-65, 2018.
[30] O. Stoilova, H. Penchev, T. Ruskov, I. Spirov, N. Manolova, I. Rashkov, “One-pot preparation of magnetic chitosan beads,” Bulg. Chem. Commun. 40, 491-497, 2008.
[31] H. Zhang, A. Omer, Z. Hu, L.-Y. Yang, C. Ji, X.-k. Ouyang, “Fabrication of magnetic bentonite/carboxymethyl chitosan/sodium alginate hydrogel beads for Cu (II) adsorption,” International journal of biological macromolecules 135, 490-500, 2019.
[32] S. Kumar, J. Koh, “Physiochemical, optical and biological activity of chitosan-chromone derivative for biomedical applications,” International Journal of Molecular Sciences 13(5), 6102-6116, 2012.
[33] X. Liu, Q. Hu, Z. Fang, X. Zhang, B. Zhang, “Magnetic chitosan nanocomposites: a useful recyclable tool for heavy metal ion removal,” Langmuir 25(1), 3-8, 2009.
[34] N. Barka, M. Abdennouri, M.E. Makhfouk, “Removal of Methylene Blue and Eriochrome Black T from aqueous solutions by biosorption on Scolymus hispanicus L.: Kinetics, equilibrium and thermodynamics,” Journal of the Taiwan Institute of Chemical Engineers 42(2), 320-326, 2011.
[35] S. Sohni, R. Hashim, H. Nidaullah, J. Lamaming, O. Sulaiman, “Chitosan/nano-lignin based composite as a new sorbent for enhanced removal of dye pollution from aqueous solutions,” International journal of biological macromolecules 132, 1304-1317, 2019.
[36] S. Yu, J. Cui, H. Jiang, C. Zhong, J. Meng, “Facile fabrication of functional chitosan microspheres and study on their effective cationic/anionic dyes removal from aqueous solution,” International journal of biological macromolecules 134, 830-837, 2019.
[37] I. Mustafa, “Methylene blue removal from water using H2SO4 crosslinked magnetic chitosan nanocomposite beads,” Microchemical Journal 144, 397-402, 2019.
[38] B. Agarwal, C. Balomajumder, P.K. Thakur, “Simultaneous co-adsorptive removal of phenol and cyanide from binary solution using granular activated carbon,” Chemical engineering journal 228, 655-664, 2013.