تهیه و شناسایی نانوکاتالیست مغناطیسی NiFe2O4/Cu(OH)2و استفاده از آن در سنتز تک ظرفی β-کلرو استات‌ها از اپوکسیدها

نوع مقاله : مقاله پژوهشی

نویسنده

دانشگاه پیام نور

چکیده

:نانوذرات مغناطیسی فریت نیکل با استفاده از نمک نیترات آهن هیدراته سه ظرفیتی و سولفات نیکل در حضور باز قوی NaOH و نمک NaCl، به روش حالت جامد سنتز و سپس، در دماهای بالا کلسینه شد. برای جلوگیری از اکسید شدن و متراکم شدن و همچنین، به­منظور افزایش تعداد گروه­های عاملی در سطح نانوکاتالیست، نانوذرات  NiFe2O4با هیدروکسید مس در محیط بازی وارد واکنش شدو نانوچندسازه مغناطیسی NiFe2O4/Cu(OH)2 به­دست آمد. نانوذرات مغناطیسی سنتز شده پس از تأیید ساختار با استفاده از روش­های VSM، FT-IR ،EDS،SEM ، TEM و  XRD ­به­عنوان کاتالیست جدید در تبدیل تک ظرفی و مؤثر اپوکسیدهای مختلف دارای استخلاف­های آریلی، آلیلی و آلکیلی به β-کلرو استرهای متناظر در حضور کلرید نیکل و استیک انیدرید در دمای اتاق تحت شرایط بدون حلال مورد استفاده قرار گرفت. سنتز β-کلرو استرها در گستره­ی زمانی 32-10دقیقه با بازده 96-80 درصد انجام شد. نانوکاتالیست مغناطیسی با استفاده از یک آهن­ربای ساده به آسانی از محیط واکنش بازیافت شده و با حفظ ویژگی مغناطیسی و کاتالیزوری در چرخه­های متوالی مورد استفاده مجدد قرار گرفت.

کلیدواژه‌ها


[1] K. G. Watson, Y. M. Fung, M. Gredley, G. J. Bird, W. R. Jackson, H. Gountzos, B. R. Matthews, “Asymmetric syntheses of (+)-diltiazem hydrochloride,”      Journal of the Chemical Society, Chemical Communications, 15, 1018-1019, 1990.
[2] J. Beger, “Präparative aspekte elektrophiler dreikomponentenreaktionen mit alkenen,” Journal für Praktische Chemie, 333, 677–698, 1991.
[3] S. Hamaguchi, T. Ohashi, K. Watanabe, “Lipase-catalyzed stereoselective hydrolysis of 2-acyloxy-3-chloropropyl p-toluenesulfonate,” Agricultural and Biological Chemistry, 50, 375–380, 1986.
[5] J. R., Williams, J. C., Boehm, “The syntheses of 3β-steroidal diacylglyceryl sulfides,” Sulfoxides, and Sulfones, Steroids, 60, 321–323 1995.                                                                                          
[6] J. Prades, S. S. Funari, P. V. Escriba, F. Barcelo, “Effects of unsaturated fatty acids and triacylglycerols on phosphatidylethanolamine membrane structure,” Journal of Lipid Research, 44, 1720–1727, 2003.
[7] Y. Iwasaki, T. Yamane, “Enzymatic synthesis of structured lipids,” Journal of Molecular Catalysis B: Enzymatic, 10, 129–140, 2000.
[8] T. Ren, D. Liu, “Synthesis of cationic lipids from 1,2,4-butanetriol,” Tetrahedron Letters, 40, 209–212, 1999.  
[9] M. Kurz, G. K. E. Scriba, “Drug–phospholipid conjugates as potential prodrugs: Synthesis, characterization, and degradation by pancreatic phospholipase A2,” Chemistry and Physics of Lipids, 107, 143–157, 2000.
[10] N. Iranpoor, B. Zeynizadeh, “Efficient and regioselective conversion of epoxides into vicinal chloroesters with TiCl4 and imidazole in ethyl acetate,” Journal of Chemical Research, (S) 582–583, 1998.
[12] J. F. Costello, J. Lam, N. M. Ratcliffe, S. L. Repetto, “A stereospecific one-pot synthesis of β-chloro esters via the Bicl3 catalysed O-acylative cleavage of crowded epoxides”, Journal of Chemical Research, 39, 324–325, 2015.
[13] J. E. Backvall, M. W. Young, K. B. Sharpless, “Vicinal acetoxychlorination of olefins by chromyl chloride in acetyl chloride,” Tetrahedron Letters, 18, 3523–3526, 1977.
[14] J. Iqbal, M. Amin Khan, R. R. Srivastava, “Cobalt catalysed regioselective cleavage of oxiranes with acylchlorides,” Tetrahedron Letters, 29, 4985–4986, 1988.
[15] I. Shibata, A. Baba, H. Matsuda, “Regioselective ring cleavage of oxiranes catalyzed by organotin halide - triphenylphosphine complex,” Tetrahedron Letters, 27, 3021–3024 1986.  
[16] P. Gros, P. Le Perchec, J. P. Senet, “Reaction of epoxides with chlorocarbonylated compounds catalyzed by hexaalkylguanidinium chloride,” Journal of Organic Chemistry, 59, 4925–4930, 1994.
[17] N. Azizi, B. Mirmashhori, M. R. Saidi, “Lithium perchlorate promoted highly regioselective ring opening of epoxides under solvent-free conditions,” Catalysis Communications, 8, 2198–2203, 2007.
[18] S. Bhar, B. C. Ranu, “Zinc-promoted selective cleavage of ethers in presence of acyl chloride,” Journal of Organic Chemistry, 60, 745–747, 1995.
[19] V. Suresh, N. Suryakiran, Y. Venkateswarlu, “A mild and efficient synthesis of chloroesters by the cleavage of cyclic and acyclic ethers using Bi(NO3)3·5H2O as a catalyst under solvent-free conditions,” Canadian Journal of Chemistry, 85, 1037–1040, 2007.
[20] T. Oriyama, A. Ishiwata, Y. Hori, T. Yatabe, N. Hasumi, G. Koga, “Highly regioselective tin-mediated ring-opening of 2,3-epoxy alcohol derivatives with trimethylsilyl halide,” Synlett, 10, 1004–1006, 1995.
[22] M. T. Maghsoodlou, R. Heydari, F. Mohamadpour, “Fe2O3 as an environmentally benign natural catalyst for one-pot and solvent-free synthesis of spiro-4H-pyran derivatives,” Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 36, 31–38, 2017.
[23] A. K. Gupta, M. Gupta, “Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications,” Biomaterials, 26, 3995–4021, 2005.
[24] Q. A. Pankhurst, J. Connolly, S. K. Jones, J. Dobson, “Applications of magnetic nanoparticles in biomedicine,” J. Physics. D: Applied. Physics, 36, R167–181, 2003.
[25] T. Neuberger, B. Schöpf, H. Hofmann, M. Hofmann, B. Rechenberg, “Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system,” Journal of Magnetism and Magnetic Materials, 293, 483–496, 2005.
[26] D. L. Graham, H. A. Ferreira, P. P. Freitas, “Magnetoresistive-based biosensors and biochips,” Trends Biotechnol., 22, 455–462, 2004.
[27] A.‐H. Lu, E. L. Salabas, F. Schüth, “Magnetic nanoparticles: synthesis, protection, functionalization, and application,” Angewandte Chemie International Edition, 46, 1222–1244, 2007.
[28] S. Shylesh, V. Schünemann, W. R. Thiel, “Magnetically separable nanocatalysts: bridges between homogeneous and heterogeneous catalysis,” Angewandte Chemie International Edition in English, 49, 3428–3459, 2010.
[29] V. Polshettiwar, R. S. Varma, “Green chemistry by nano-catalysis,” Green Chemistry, 12, 743–754, 2010.
[30] R. Eisavi, S. Ghadernejad, B. Zeynizadeh, F. Mohammad Aminzadeh, “Magnetically separable nano CuFe2O4: an efficient and reusable heterogeneous catalyst for the green synthesis of thiiranes from epoxides with thiourea,” Journal of Sulfur Chemistry, 37, 537–545, 2016.
[31] R. Eisavi, F. Ahmadi, B. Ebadzade, S. Ghadernejad, “A green method for solvent-free conversion of epoxides to thiiranes using NH4SCN in the presence of NiFe2O4 and MgFe2O4 magnetic nanocatalysts,” Journal of Sulfur Chemistry, 38, 614, 2017.
[34] S. Hassanzadeh, R. Eisavi, M. Abbasian, “Green synthesis of thiiranes from epoxides catalyzed by magnetically separable CuFe2O4/Mg(OH)2 nanocomposite in water under benign conditions,” Journal of Sulfur Chemistry, 40, 240-255, 2019.
[37] B. Zeynizadeh, S. Rahmani, H. Tizhoush, “The immobilized Cu nanoparticles on magnetic montmorillonite (MMT@Fe3O4@Cu): As an efficient and reusable nanocatalyst for reduction and reductive-acetylation of nitroarenes with NaBH4,” Polyhedron, 175, 114201-111424, 2020.
[38] H. Zheng, J. Huang, T. Zhou, Y. Jiang, Y. Jiang, M. Gao, Y. Liu, “Recyclable magnetic Cu/CuFe2O4 nanocomposites for the rapid degradation of 4-NP, ” Catalysts, 10, 1437-1447 2020.
[39] Z. P. Sun, L. Liu, D.Z. Jia, W. Pan, “Simple synthesis of CuFe2O4 nanoparticles as gas-sensing materials,” Sensors and Actuators B: Chemical, 125, 144-148, 2007.
[41] L. Wang, K. Zhang, Z. Hu, W. Duan, F. Cheng, J. Chen, “Porous CuO Nanowires as the Anode of Rechargeable Na-ion Batteries,” Nano Res.,7, 199-208, 2014.