ساخت الکترود چندسازه براساس گرافن/آهن-مس برای کاربرد در دستگاه های ذخیره ساز انرژی الکتریکی

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه شهید بهشتی، دانشکده فیزیک

چکیده

در این مقاله، الکترودی برای ابرخازن با استفاده از گرافن متورق شده و آلاییده شده با فلزات مغناطیسی و مشتقات اکسیدی آن‌‌ها ساخته شد. ماده‌ی سنتز شده به عنوان ماده‌ی فعال ذخیره­ساز انرژی الکتریکی بر روی زیرلایه‌ی فوم نیکل قرار گرفت و خواص الکتروشیمیایی آن مورد بررسی قرار گرفت. ساختار و ترکیب­های موجود در نمونه‌‌‌های سنتز شده با طیف‌سنجی پراش پرتوی ایکس (XRD)، پرتوی ایکس انرژی تفکیک شده (EDS) و طیف­سنجی رامان مطالعه شد. همچنین برای شناسایی مورفولوژی نمونه‌‌‌ها از میکروسکوپ الکترونی روبشی (SEM)، میکروسکوپ الکترونی عبوری (TEM و HRTEM) بهره گرفته شد. مطالعات ولتامتری چرخه‌ای و شارژ-دشارژ نشان دادند که رفتار ماده‌ی سنتز شده باتری­گونه است. براساس نتایج حاصل از ظرفیت ویژه در سرعت‌‌‌‌های روبش mV/s 5، 10، 20، 30، 40، 50 و 70 در الکترولیت 1 مولار KOH، بالاترین ظرفیت مربوط به سرعت روبش mV/s 5 است که ظرفیت در آن برابر با F/g 63/1124 است.

کلیدواژه‌ها


عنوان مقاله [English]

Fabrication of composite electrode based on graphene / iron / copper for use in electrical energy storage devices

نویسندگان [English]

  • Moojan Zahiri Rad
  • Seyed Majid Mohseni
  • Saadat Mokhtari
  • Zahra Sheykhifard
Department of physics, Shahid Beheshti university
چکیده [English]

In this paper, Graphene was exfoliated and doped simultaneously with magnetic metals and their oxide derivatives based on electrochemical method. The electrochemical properties of the as-prepared samples are investigated as advanced electrode materials for supercapacitors which was coated on nickel foam substrate. The structure and composition of the synthesized samples were studied by X-ray diffraction (XRD), Energy-dispersive X-ray spectroscopy (EDS) and Raman spectroscopy. The morphologies were characterized by field emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM) and High-resolution transmission electron microscopy (HRTEM). Cyclic voltammetry and galvanostatic charge-discharge measurments have shown that the behavior of the synthesized material is battery-like. According to the results of the specific capacity at different scan rates of 5, 10, 20, 30, 40, 50 and 70 mV/s in 1 M KOH, the highest capacity related to the scan rate of 5 mV/s, which has a capacity equal to 1124.63 F/g.

[1] C. Liu, F. Li, M. Lai-Peng, and H. M. Cheng, “Advanced materials for energy storage,” Adv. Mater., 22, 28–62, 2010.
 
[2] H. Liu, J. Zhu, Z. Li, Z. Shi, J. Zhu, and H. Mei, “Fe2O3/N doped rGO anode hybridized with NiCo LDH/Co(OH)2 cathode for battery-like supercapacitor,” Chem. Eng. J., 403, 126325, 2021.
 
[3]Vangari, M., Pryor, T. & Jiang, L. Supercapacitors: Review of materials and fabrication methods. J. Energy Eng. 139, 72–79 2013.
 
[4] S. K. Shinde et al., “Designing of nanoflakes anchored nanotubes-like MnCo2S4/halloysite composites for advanced battery like supercapacitor application,” Electrochim. Acta, 341, 135973, 2020.
 
[5] C. Liu, Z. Yu, D. Neff, A. Zhamu, and B. Z. Jang, “Graphene-based supercapacitor with an ultrahigh energy density,” Nano Lett., 10, 4863–4868, 2010.
 
[6] S.Z. Inamuddin, Mohammad Faraz Ahmer, Abdullah M. Asiri, Electrochemical Capacitors: Theory, Materials and Applications. 2018.
 
[7] E. Frackowiak and F. Béguin, “Carbon materials for the electrochemical storage of energy in capacitors,” Carbon N. Y., 39, 937–950, 2001.
 
[8] A.G. Pandolfo and A. F. Hollenkamp, “Carbon properties and their role in supercapacitors,” J. Power Sources, 157, 11–27, 2006.
 
[9] L. Wang, Y. Li, Z. Han, L. Chen, B. Qian, X. Jiang, J. Pinto, and G. Yang, “Composite structure and properties of Mn3O4/graphene oxide and Mn3O4/graphene,” Journal of Materials Chemistry A, 2013.
 
[10] X. Xia, Q. Hao, W. Lei, W. Wang, D. Sun, and X. Wang, “Nanostructured ternary composites of graphene/Fe 2O 3/polyaniline for high-performance supercapacitors,” J. Mater. Chem., 22, 16844–16850, 2012.
 
[11] D. Wang, Y. Li, Q. Wang, and T. Wang, “Nanostructured Fe 2O 3-graphene composite as a novel electrode material for supercapacitors,” J. Solid State Electrochem., 16, 2095–2102, 2012.
 
[12] Z. Wang, C. Ma, H. Wang, Z. Liu, and Z. Hao, “Facilely synthesized Fe2O3-graphene nanocomposite as novel electrode materials for supercapacitors with high performance,” J. Alloys Compd., 552, 486–491, 2013.
 
[13] V.B. Mohan, M. Nieuwoudt, K. Jayaraman, and D. Bhattacharyya, “Quantification and analysis of Raman spectra of graphene materials,” Graphene Technol., 2, 47–62, 2017.
 
[14] H. Qian, B. Wu, Z. Nie, T. Liu, P. Liu, H. He, J. Wu, Z. Chen, and S. Chen, “A flexible Ni3S2/Ni@CC electrode for high-performance battery-like supercapacitor and efficient oxygen evolution reaction,” Chemical Engineering Journal, 30, 127646, 2020.
 
[15] A.E. Elkholy, A.S. Dhmees, F.E.T. Heakal, and M. A. Deyab, “Mesoporous ZnMoS4 as a supercapacitor electrode material with battery-like behavior,” New J. Chem., 43, 4, 1987–1992, 2019.
 
[16] A. V. Thakur and B.J. Lokhande, “Electrolytic anion affected charge storage mechanisms of Fe3O4 flexible thin film electrode in KCl and KOH: a comparative study by cyclic voltammetry and galvanostatic charge–discharge,” J. Mater. Sci. Mater. Electron., 28, 11755–11761, 2017.
 
 
[17] L. Xie, S. Chen, Y. Hu, Y. Lan, X. Li, Q. Deng, J. Wang, Z. Zeng, and S. Deng, “Construction of phosphatized cobalt nickel-LDH nanosheet arrays as binder-free electrode for high-performance battery-like supercapacitor device,” Journal of Alloys and Compounds, p. 157652, 2020.
 
[18] S. Vijayakumar, S.-H. Lee, and K.-S. Ryu, “Hierarchical CuCo2O4 nanobelts as a supercapacitor electrode with high areal and specific capacitance,” Electrochimica Acta, 182, 979–986, 2015.
 
[19] Z. Fahimi and O. Moradlou, “Fabrication of ZnO @ C foam : A fl exible free-standing electrode for energy storage devices,” Mater. Des., 189, 108525, 2020.
 
[20] L. Abbasi, M. Arvand, and S. E. Moosavifard, “Facile template-free synthesis of 3D hierarchical ravine-like interconnected MnCo2S4 nanosheet arrays for hybrid energy storage device,” Carbon 10, 299–308, 2020.
 
[21] J.B. Cook, T. C. Lin, H.S. Kim, A. Siordia, B. S. Dunn, and S. H. Tolbert, “Suppression of Electrochemically Driven Phase Transitions in Nanostructured MoS2 Pseudocapacitors Probed Using Operando X-ray Diffraction,” ACS Nano, 13, 1223–1231, 2019.
 
[22] M. D. Stoller and R. S. Ruoff, “Best practice methods for determining an electrode material’s performance for ultracapacitors,” Energy Environ. Sci., 3, 1294–1301, 2010.
 
[23] S. Ghasemi and F. Ahmadi, “Effect of surfactant on the electrochemical performance of graphene / iron oxide electrode for supercapacitor,” J. Power Sources, 289, 129–137, 2015.
 
[24] Z. Song, W. Liu, P. Xiao, Z. Zhao, G. Liu, and J. Qiu, “Nano-iron oxide ( Fe 2 O 3 )/ three-dimensional graphene aerogel composite as supercapacitor electrode materials with extremely wide working potential window,” Mater. Lett., 1–4, 2015.
 
 
[25] M. Aghazadeh and I. Karimzadeh, “Fabrication of high performance metal ion doped iron-oxide electrode for supercapacitor applications through a novel platform,” Mater. Res. Express, 4, 105505, 2017.