بررسی مقایسه‌ای تاثیر سه نوع نانوذره دی اکسید تیتانیوم در القای مرگ سلولی در سلول‌های سرطان سینه T47-D و برهمکنش با DNA

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه زیست شناسی، دانشکده علوم پایه، واحد علوم و تحقیقات تهران، دانشگاه آزاد اسلامی، تهران، ایران

2 گروه نانوبیوتکنولوی، گروه فناوری‌های نوین، انستیتو پاستور، تهران، ایران

چکیده

مروزه نانوذرات دی اکسید تیتانیوم (TiO2NPs) در صنایع نانوتکنولوژی و پزشکی مورد استفاده قرار می‌گیرند و از طرق مختلف سنتز می‌شوند. هدف از این مطالعه، بررسی نقش پوشش سطح نانوذرات دی اکسید تیتانیوم در القای مرگ سلولی در سلول‌های سرطانی T47-D و ایجاد تغییرات ساختاری در مولکول DNA می‌باشد. بررسی ثابت‌های اتصال نشان داد نانوذرات حل شده در ماتریکس پراکنده اتیلن گلیکول (M-1 105×2/2) در مقایسه با دو نانوذرات دیگر (M-1 104×3/2 برای TiO2NPs بدون پوشش ویژه و M-1 105×1/1 برای NPS TiO2 حاوی پایدارکننده HNO3)، می‌توانند برهمکنش قوی‌تری با DNA داشته باشند. نتایج طیف‌سنجی CD نشان داد در حضور هر سه نوع نانوذرات استکینگ بازهای DNA تغییر می‌یابد. با استفاده از آزمون MTT مقادیر IC50 در حضور هر سه نوع نانوذرات محاسبه شد. نتایج رنگ آمیزی DAPI و تکنیک فلوسایتومتری نشان داد نانوذرات دی اکسید تیتانیوم حل شده در ماتریکس پراکنده اتیلن گلیکول با غلظت کمتری (63 میکرومولار=IC50) موجب القای مرگ سلولی بیشتری در سلول‌ها می‌شوند. نتایج این مطالعه بیانگر اهمیت پوشش سطح نانوذرات دی اکسید تیتانیوم بر میزان برهمکنش آنها با DNA و همچنین میزان القای مرگ سلولی می‌باشد. توجه به این نکته در طراحی‌ نانوداروها برای درمان سرطان بسیار مهم است.

کلیدواژه‌ها


عنوان مقاله [English]

A comparative study ofthree types oftitanium dioxide nanoparticles effects on including cell growth inhibition in T47-D breast cancer cells and DNA Interaction

نویسندگان [English]

  • محسن پور Mohsenpour 1
  • Azadeh Hekmat 1
  • Seyed Mohammad Atyabi 1
  • Haleh Bakhshandeh 2
1 Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 Nanobiotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
[1] A. Hekmat, M. Afrough, S. Hesami Tackallou,
F. Ahmad, “Synergistic effects of Titanium dioxide
nanoparticles and Paclitaxel combination on the
DNA structure and their antiproliferative role on
MDA-MB-231cells”, J Nanoanalysis, 7, 152-165,
2020.
[2] M. Textor, C. Sittig, V. Frauchiger, S. Tosatti,
D. Brunette, “Titanium in medicine”, Editors: D.
Brunette, P. Tengvall, M. Textor, P. Thomsen
Springer Verlag, Heidelberg and Berlin, 171, 2001.
[3] A. Hekmat, A.A. Saboury, A. Divsalar, A.
Seyedarabi, “Structural effects of TiO2
nanoparticles and doxorubicin on DNA and their
antiproliferative roles in T47-D and MCF7 cells”,
Anti-Cancer Agents Med. Chem, 13, 932-951,
2013.
[4] C. Disdier, M. Chalansonnet, F. Gagnaire, L.
Gaté, F. Cosnier, J. Devoy, W. Saba, A.K. Lund, E.
Brun, A. Mabondzo, “Brain inflammation, blood
brain barrier dysfunction and neuronal
synaptophysin decrease after inhalation exposure to
titanium dioxide nano-Aerosol in aging rats”, Sci
Rep., 7, 12196, 2017.
[5] R.K. Shukla, A. Kumar, D. Gurbani, A.K.
Pandey, S. Singh, A. Dhawan, “TiO2 nanoparticles
induce oxidative DNA damage and apoptosis in
human liver cells”, Nanotoxicology, 7, 48-60,
2013.
[6] S. Çeşmeli, C. Biray Avci, “Application of
titanium dioxide (TiO2) nanoparticles in cancer
therapies”, J Drug Target, 27, 762-766, 2019.
[7] M. Malekshahi Byranvand, A. Nemati Kharat,
L. Fatholahi, Z. Malekshahi Beiranvand, “A review
on synthesis of nano-TiO2 via different methods”, J
Nanostruct, 3, 1-9, 2013.
[8] W. Wang, W. Xiong, J. Wan, X. Sun, H. Xu, X.
Yang, “The decrease of PAMAM dendrimerinduced cytotoxicity by PEGylation via attenuation
of oxidative stress”, Nanotechnology, 20, 105103,
2009.
[9] Y. Hu, J. Xie, Y.W. Tong, C.-H. Wang, “Effect
of PEG conformation and particle size on the
cellular uptake efficiency of nanoparticles with the
HepG2 cells”, J Control Release, 118, 7-17, 2007.
[10] W. Eck, G. Craig, A. Sigdel, G. Ritter, L.J.
Old, L. Tang, M.F. Brennan, P.J. Allen, M.D.
Mason, “PEGylated gold nanoparticles conjugated
to monoclonal F19 antibodies as targeted labeling
agents for human pancreatic carcinoma tissue”,
ACS Nano, 2, 2263-2272, 2008.
[11] J. Okuda-Shimazaki, S. Takaku, K. Kanehira,
S. Sonezaki, A. Taniguchi, “Effects of titanium
dioxide nanoparticle aggregate size on gene
expression”, Int J Mol Sci, 11, 2383-2392, 2010.
147 بهار ۱400 |شماره ۱ | سال هشتم
[12] E.-J. Park, J. Yoon, K. Choi, J. Yi, K. Park,
“Induction of chronic inflammation in mice treated
with titanium dioxide nanoparticles by intratracheal
instillation”, Toxicology, 260, 37-46, 2009.
[13] D. Gao, S. Tang, Q. Tong, “Oleanolic acid
liposomes with polyethylene glycol modification:
promising antitumor drug delivery”, Int J
Nanomed, 7, 3517, 2012.
[14] K.-H. Park, E.M. Jin, H.B. Gu, S.E. Shim,
C.K. Hong, “Effects of HNO3 treatment of TiO2
nanoparticles on the photovoltaic properties of dyesensitized solar cells”, Mater Lett, 63, 2208-2211,
2009.
[15] I. Haq, “Thermodynamics of drug–DNA
interactions”, Arch Biochem Biophys, 403, 1-15,
2002.
[16] A. Magrez, L. Horváth, R. Smajda, V. Salicio,
N. Pasquier, L. Forro, B. Schwaller, “Cellular
toxicity of TiO2-based nanofilaments”, ACS Nano,
3, 2274-2280, 2009.
[17] T. Mosmann, “Rapid colorimetric assay for
cellular growth and survival: application to
proliferation and cytotoxicity assays”, J Immunol
Methods, 65, 55-63, 1983.
[18] A. Hekmat, Z. Hajebrahimi, A. Motamedzade,
“Structural Changes of Human Serum Albumin
(HSA) in Simulated Microgravity”, Protein Pept
Lett, 24, 1030-1039, 2017.
[19] A. Hekmat, A.A. Saboury, A. Divsalar, “The
effects of silver nanoparticles and doxorubicin
combination on DNA structure and its
antiproliferative effect against T47-D and MCF7
cell lines”, J Biomed Nanotechnol, 8, 968-982,
2012.
[20] A. Mukherjee, B. Singh, “Binding interaction
of pharmaceutical drug captopril with calf thymus
DNA: a multispectroscopic and molecular docking
study”, J Lumin, 190, 319-327, 2017.
[21] S. Patel, P. Patel, S.R. Bakshi, “Titanium
dioxide nanoparticles: an in vitro study of DNA
binding, chromosome aberration assay, and comet
assay”, Cytotechnology, 69, 245-263, 2017.
[22] M. Rahban, A. Divsalar, A.A. Saboury, A.
Golestani, “Nanotoxicity and spectroscopy studies
of silver nanoparticle: calf thymus DNA and K562
as targets”, J Phys Chem C, 114, 5798-5803, 2010.
[23] N. Shahabadi, M. Maghsudi, “Multispectroscopic and molecular modeling studies on
the interaction of antihypertensive drug;
methyldopa with calf thymus DNA”, Mol Biosyst,
10, 338-347, 2014.
[24] N. Shahabadi, A.A. Asadian, M. Mahdavi,
“Intercalation of a Zn (II) complex containing
ciprofloxacin drug between DNA base pairs”,
Nucleosides Nucleotides Nucleic Acids, 36, 676-
689, 2017.
[25] S. Huang, H. Qiu, S. Lu, F. Zhu, Q. Xiao,
“Study on the molecular interaction of graphene
quantum dots with human serum albumin:
combined spectroscopic and electrochemical
approaches”, J Hazard Mater, 285, 18-26, 2015.
[26] Z. Pashah, A. Hekmat, S. Hesami Tackallou,
“Structural effects of Diamond nanoparticles and
Paclitaxel combination on calf thymus DNA”,
Nucleotides Nucleic Acids, 36, 249-278, 2019.
[27] A. Shamsi, A. Ahmed, B. Bano, “Probing the
interaction of anticancer drug temsirolimus with
human serum albumin: Molecular docking and
spectroscopic insight”, Biomol Struct Dyn, 36, 1-
38, 2017.
[28] J. Kypr, I. Kejnovska, D. Renciuk, M.
Vorlickova, “Circular dichroism and
conformational polymorphism of DNA”, Nucleic
Acids Res, 37, 1713-1725, 2009.
[29] N. Shahabadi, F. Shiri, M. Norouzibazaz, A.
Falah, “Disquisition on the interaction of
ibuprofen–Zn (II) complex with calf thymus DNA
by spectroscopic techniques and the use of Hoechst
33258 and Methylene blue dyes as spectral
probes”, Nucleosides Nucleotides Nucleic Acids,
37, 125-146, 2018.
[30] N. Li, L. Ma, J. Wang, L. Zheng, J. Liu, Y.
Duan, H. Liu, X. Zhao, S. Wang, H. Wang,
“Interaction between nano-anatase TiO 2 and liver
DNA from mice in vivo”, Nanoscale Res Lett, 5,
108, 2010.
[31] A. Hekmat, A.A. Saboury, “Structural Effects
of the Syntheticcobalt–Manganese-Zinc Ferrite
148 بهار ۱400 |شماره ۱ | سال هشتم
Nanoparticles (Co0.3Mn0.2Zn0.5Fe2O4 NPs) on
DNA and its Antiproliferative Effect on
T47Dcells”, Bionanoscience, 9, 821-832, 2019.
[32] R. Zucker, E. Massaro, K. Sanders, L. Degn,
W. Boyes, “Detection of TiO2 nanoparticles in
cells by flow cytometry”, Cytometry A, 77, 677-
685, 2010.
[33] P. Thevenot, J. Cho, D. Wavhal, R.B.
Timmons, L. Tang, “Surface chemistry influences
cancer killing effect of TiO2 nanoparticles”,
Nanomedicine: Nanotechnology, Biology and
Medicine, 4, 226-236, 2008.
[34] J. Xie, X. Pan, M. Wang, J. Ma, Y. Fei, P.-N.
Wang, L. Mi, “The role of surface modification for
TiO2 nanoparticles in cancer cells”, Colloids Surf
B Biointerfaces, 143, 148-155, 2016.
[35] J. Jiang, G. Oberdörster, P. Biswas,
“Characterization of size, surface charge, and
agglomeration state of nanoparticle dispersions for
toxicological studies”, J Nanopart Res, 11, 77-89,
2009.