سنتز زیستی نانوذرات نقره توسط بذر در حال جوانه زنی تحت تیمار سرمایی گیاهان Trifolium resupinatum و Trigonella foenum-graecum و بررسی خاصیت ضد میکروبی آنها

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار،دانشگاه بین المللی امام خمینی، قزوین

2 دانش آموخته، دانشگاه بین المللی امام خمینی، قزوین

چکیده

سنتز زیستی نانوذرات در سال های اخیر به دلیل زیست سازگاری بیشتر و عدم آلودگی محیط زیست نسبت به سایر روش ها توجه بسیاری از محققین را جلب نموده است. وجود پوششی از مولکول‌های زیستی بر روی این نانوذرات امکان کارایی و سازگاری بیشتر آنها در علوم پزشکی، داروسازی و صنایعی مانند نساجی و تهیه مواد بهداشتی و آرایشی را بیشتر می‌کند. در این پژوهش نانو ذرات نقره (Ag NPs) توسط عصاره ترشحی حاصل از جوانه زنی بذور گیاهان شنبلیله و شبدر تیمار شده با سرما بیوسنتز و خاصیت ضد میکروبی آنها برای اولین بار بررسی شد. جهت تائید تشکیل نانو ذرات و بررسی ویژگی‌های آنها از دستگاه‌های اسپکتروفتومتری UV-Vis، XRD ،FESEM و DLS استفاده شد. گروه‌های عاملی موثر در فرآیند، توسط FTIR تشخیص داده شده و جهت بررسی خاصیت ضد میکروبی نانو ذرات بیوسنتزی از روش انتشار دیسک استفاده شد. نتایج مشخص نمود که تیمار سرمایی، نانوذرات کوچکتر و چند وجهی با خاصیت ضد میکروبی بیشتری تولید می‌کند. میانگین قطر نانوذرات بیوسنتز شده توسط عصاره‌ی بذر تیمار شده با سرما‌ی شبدر از همه کوچکتر nm) 25/9) و ویژگی ضدباکتریایی آن با قطر مهار کنندگی mm83/10 از همه بیشتر بود.

کلیدواژه‌ها


عنوان مقاله [English]

Biologicalsynthesis and antibacterial effect ofsilver nanoparticles using Trifoliumresupinatumand Trigonella foenum-graecum seeds during germination stage under cold treatment

نویسندگان [English]

  • Maryam Ghannadnia 1
  • Jamile Mousavi 2
1 Assistant professor,Imam Khomeini International University, Qazvin
2 Graduated, Imam Khomeini International University, Qazvin
[1] A. Leela, M. Vivekanandan, "Tapping the
unexploited plant resources for the synthesis of
silver nanoparticles", African Journal of
Biotechnology, 7, 3162-3165, 2008.
[2] T. Klaus-Joerger, R. Joerjer, E. Olsson, C.G.
Granqvist, "Bacteria as workers in the living
factory: metal-accumulating bacteria and their
potential for materials science", Trends in
Biotechnology, 19, 15-20, 2001.
[3] S.M. Jain, P.K. Saxena, "Protocols for in vitro
cultures and secondary metabolite analysis of
aromatic and medicinal plants". Humana Press,
Springer, 350 p, 2009.
[4] N. Saifuddin, C. Wong, A. Yasumira, "Rapid
biosynthesis of silver nanoparticles using culture
supernatant of bacteria with microwave
irradiation", Journal of Chemistry, 6, 61-70, 2009.
[5] K.C. Bhainsa, S. D'souza, "Extracellular
biosynthesis of silver nanoparticles using the
fungus Aspergillus fumigatus", Colloids and
surfaces B: Biointerfaces, 47, 160-164, 2006.
[6] I. Willner, R. Baron, B. Willner, "Integrated
nanoparticle–biomolecule systems for biosensing
and bioelectronics", Biosensors and Bioelectronics,
22, 1841-1852, 2007.
[7] A. Vedpriya, "Living Systems: eco-friendly
nanofactories", Digest Journal of Nanomaterials &
Biostructures, 5, 9-21, 2010.
[8] C. Krishnaraj, P. Mathukumaran, R.
Ramachandran, M.D. Balakumaran, P.T.
Kalaichelvan, "Acalypha indica Linn: biogenic
synthesis of silver and gold nanoparticles and their
cytotoxic effects against MDA-MB-231, human
breast cancer cells", Biotechnology Reports, 4, 42-
49, 2014.
[9] P. Rajasekar, S. Priyadharshini, T.
Rajarajeshwari, C. Shivashri, "Bio-inspired
synthesis of silver nanoparticles using
Andrographis paniculata whole plant extract and
their antimicrobial activity over pathogenic
microbes", Journal of Biomedicine and
Biotechnology, 3, 47-52, 2013.
[10] M. Sathishkumar, K. Sneha, S.W. Won, C.W.
Cho, S. Kim, Y.S. Yun, "Cinnamon zeylanicum
bark extract and powder mediated green synthesis
of nano-crystalline silver particles and its
bactericidal activity". Colloids and Surfaces B:
Biointerfaces, 73, 332-338, 2009.
[11] S. Pirtarighat, M. Ghannadnia, S. Baghshahi,
"Green synthesis of silver nanoparticles using the
98 بهار ۱400 |شماره ۱ | سال هشتم
plant extract of Salvia spinosa grown in vitro and
their antibacterial activity assessment", Journal of
Nanostructure in Chemistry, 9, 1-9, 2019.
[12] L. Gan, Sh. Zhang, Y. Zhang, S. H. He, Y.
Tian, "Biosynthesis, characterization and
antimicrobial activity of silver nanoparticles by a
halotolerant Bacillus endophyticus SCU-L",
Preparative Biochemistry and Biotechnology, 48,
582-588, 2018.
[13] R.R. Arvizo, S. Bhattacharya, R.A. Kudgus,
K. Giri, R. Bhattacharya, P. Mukherjee, "Intrinsic
therapeutic applications of noble metal
nanoparticles: past, present and future", Chemical
Society Reviews, 41, 2943-2970, 2012.
[14] M.M. Khalil, E.H. Ismail, K.Z. El-baghdady,
D. Mohamed, "Green synthesis of silver
nanoparticles using olive leaf extract and its
antibacterial activity". Arabian Journal of
Chemistry, 7, 1131-1139, 2014.
[15] R. Geetha, T.H. Ashokumar, S. Tamilselvan,
K. Govindaraju, M. Sadiq, G. Singaravelu, "Green
synthesis of gold nanoparticles and their anticancer
activity", Cancer Nanotechnology, 4, 91-96, 2013.
[16] D. Raju, N. Paneliya, U.J. Mehta,
"Extracellular synthesis of silver nanoparticles
using living peanut seedling", Applied
Nanoscience, 4, 875-879, 2014.
[17] G.H. Rabie, H.S. Hegazy, L.D. Shaban, D.S.
Raie, "Biosynthesis of nano-silver by cell free
secretions from seeds of Medicago sativa",
American Journal of Life Sciences, 3, 1-4, 2015.
[18] S. Pirtarighat, M. Ghannadnia, S. Baghshahi,
"Antimicrobial effects of green synthesized silver
nanoparticles using Melissa officinalis grown
under in vitro condition", Nanomedicine Journal, 4,
184-190, 2017.
[19] S. Li, Y. Shen, A. Xie, X. Yu, L. Qiu, L.
Zhang, Q. Zhang, " Green synthesis of silver
nanoparticles using Capsicum annuum L extract"
Green Chemistry, 9, 852–858, 2007.
[20] J.Y. Song, B.S. Kim, "Rapid biological
synthesis of silver nanoparticles using plant leaf
extracts", Bioprocess and biosystems engineering,
32, 79–84, 2009.
[21] S.P. Chandran, M. Chaudhary, R. Pasricha, A.
Ahmad, M. Sastry, "Synthesis of Gold
Nanotriangles and Silver Nanoparticles Using Aloe
vera Plant Extract", Biotechnology Progress, 22,
577−583, 2006.
[22] C. Krishnaraj, E.G. Jagan, S. Rajasekar, P.
Selvakumar, P.T. Kalaichelvan, N. Mohan,
"Synthesis of silver nanoparticles using Acalypha
indica leaf extracts and its antibacterial activity
against water borne pathogens". Colloids and
Surfaces B: Biointerfaces, 76, 50-56, 2010.
[23] S. Rajeshkumar, C. Kannan, G. Annadurai,
"Synthesis and characterization of antimicrobial
silver nanoparticles using marine brown seaweed
Padina tetrastromatica". Drug Invention Today, 4,
511-513, 2012.
[24] S. Li, , Y. Shen, A. Xie, X. Yu, L. Qiu, L.
Zhang, Q. Zhang, "Green synthesis of silver
nanoparticles using Capsicum annum L. extract".
Green Chemistry, 9, 852-858, 2007.
[25] S.P. Chandran, M. Chaudhary, R. Pasricha, A.
Ahmad, M. Sastry, "Synthesis of gold
nanotriangles and silver nanoparticles using
Aloevera plant extract", Biotechnology progress,
22, 577-583, 2006.
99 بهار ۱400 |شماره ۱ | سال هشتم
[26] M.K. Swamy, K.M. Sudipta, K. Jayanta, S.
Balasubramanya, "The green synthesis,
characterization, and evaluation of the biological
activities of silver nanoparticles synthesized from
Leptadenia reticulata leaf extract", Applied
Nanoscience, 5, 73-81, 2015.
[27] A. Saxena, R. Tripathi, R. Singh, "Biological
synthesis of silver nanoparticles by using onion
(Allium cepa) extract and their antibacterial
activity", Digest Journal of Nanomaterials and
Biostructures, 5, 427-432, 2010.
[28] S.R. Bonde, D.P. Rathod, A.P. Ingle, R.B.
Ade, A.K. Gade, M.K. Rai, "Murraya koenigii
mediated synthesis of silver nanoparticles and its
activity against three human pathogenic bacteria",
Nanoscience Methods, 1, 25-36, 2012.
[29] K. Praveenkumar, W. Paul, P.S.H. Chandra,
"Green synthesis of gold nanoparticles with
Zingiber officinale extracts characterization and
blood compatibility", Process Biochemistry, 46,
2007-13, 2011.
[30] S. Pirtarighat, M. Ghannadnia, S. Baghshahi,
"Biosynthesis of silver nanoparticles using
Ocimum basilicum cultured under controlled
conditions for bactericidal application", Materials
Science and Engineering: C, 98, 250-255, 2019.
[31] P. Kumar, S.S. Selvi, M. Govindaraju,
"Seaweed-mediated biosynthesis of silver
nanoparticles using Gracilaria corticata for its
antifungal activity against Candida spp", Applied
Nanoscience, 3, 495-500, 2013.
[32] M. Vanaja, G. Gnanajobitha, K. Paulkumar,
"Phytosynthesis of silver nanoparticles by Cissus
quadrangularis: Influence of physicochemical
factors". Journal of Nanostructure in Chemistry, 3,
17-25, 2013.
[33] J.F. Su, Z.H. Huang, X.Y. Yuan, X.Y. Wang,
M. Li, "Structure and properties of carboxymethyl
cellulose/soy protein isolate blend edible films
crosslinked by Maillard reactions", Carbohydrate
polymers, 79, 145-153, 2010.
[34] W.G. Hopkins, N.P.A. Huner, "Introduction to
Plant Physiology", John Wiley & Sons, Inc.
London, Ontario, 560 P. 2004.
[35] D.V. Badri, J.M. Vivanco, "Regulation and
function of root exudates", Plant, Cell &
Environment, 32, 666-681, 2009.
[36] P.R. Sre, M. Reka, R. Poovazhagi, M.A.
Kumar, K. Murugesan, "Antibacterial and
cytotoxic effect of biologically synthesized silver
nanoparticles using aqueous root extract of
Erythrina indica Lam", Spectrochimica Acta Part
A: Molecular and Biomolecular Spectroscopy, 135,
1137-1144, 2015.
[37] B. Ajitha, Y.A.K. Reddy, P.S. Reddy,
"Biogenic nano-scale silver particles by Tephrosia
purpurea leaf extract and their inborn antimicrobial
activity", Spectrochimica Acta Part A: Molecular
and Biomolecular Spectroscopy, 121, 164-172,
2014.
[38] J.Y. Cheon, S.J. Kim, Y.H. Rhee, O.H. Kwon,
W.H. Park, "Shape-dependent antimicrobial
activities of silver nanoparticles", International
Journal of Nanomedicine, 14, 2773–2780, 2019.
[39] S. Ravikumar, M. Gnanadesigan, P. Suganthi,
A. Ramalakshmi, "Antibacterial potential of
chosen mangrove plants against isolated urinary
tract infectious bacterial pathogens", International
Journal of Medicine and Medical Sciences, 2, 94-
99, 2010.
[40] S. Pal, Y.K. Tak, J.M. Song, "Does the
antibacterial activity of silver
100 بهار ۱400 |شماره ۱ | سال هشتم
nanoparticles depend on the shape of the
nanoparticle? A study of the
gram-negative bacterium Escherichia coli",
Applied and Environmental Microbiology, 73,
1712–1720, 2007.
[41] M. Posmyk, K. Janas, "Effects of seed
hydropriming in presence of exogenous proline on
chilling injury limitation in Vigna radiata L.
seedlings", Acta Physiologiae Plantarum, 29, 509-
517, 2007.
[42] A. Bochenek, J. Golaszewski, A.I. Piotrowiczcieslak, R.J. Gorecki, "The effects of temperature
on the dormancy and germination of Cirsium
arvense [L.] Scop. seeds", Acta Societatis
Botanicorum Poloniae, 78, 105-114, 2009.
[43] P. Nick, "Symbiotic secrets", Protoplasma,
256, 881-882, 2019.
[44] P. Biswas, A.R. East, E.W. Hewett, J.A.
Heyes, "Increase in electrolyte leakage as a
function of chilling stress and ripening of tomato",
Acta Horticulturae, 8, 283-290, 2011.