خصوصیات سینتیکی نانوزایم جدید مقلد پراکسیدازی بر پایه کربن/گرافن و کاربرد آن در تشخیص گلوتاتیون در داروها

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه زیست شناسی، دانشکده ی علوم پایه، دانشگاه گیلان، رشت، ایران

2 مرکز علم و فناوری مواد پیشرفته و نانوفناوری، دانشکده و پژوهشکده ی فنی و مهندسی، دانشگاه جامع امام حسین ع، تهران، ایران

3 دانشکده ی زیست شناسی، پردیس علوم، دانشگاه تهران، تهران، ایران

چکیده

با توجه به اهمیت بهبودبخشی خصوصیات اکسید گرافن و کاربرد وسیع نانوزایم ها در حوزه های مختلف از جمله صنایع دارویی، این مطالعه با هدف سنتز نانوکامپوزیت اکسید گرافن احیاء/نانولوله ی کربنی چند دیواره، بررسی خصوصیت شبه پراکسیدازی آن و سنجش گلوتاتیون با روش رنگ سنجی ساده، سریع و کاربردی در کپسول های تجاری گلوتاتیون صورت گرفت. نانوکامپوزیت حاصل خاصیت مقلد پراکسیدازی مطلوبی از خود نشان داد و در مقایسه با آنزیم پراکسیداز طبیعی تمایل بیشتری به H2O2 داشت. همچون بسیاری از آنزیم های طبیعی، رفتار سینتیکی نانوزایم از معادله مکائلیس-منتن تبعیت کرد و فعالیت کاتالیتیکی آن وابسته به pH، دما و غلظت کاتالیزور بود. با توجه به توانایی گلوتاتیون در حذف گونه های فعال اکسیژن و به تبع آن مهار فعالیت شبه پراکسیدازی نانوزایم، یک حسگر رنگ سنج برای سنجش گلوتاتیون طراحی شد که محدوده ی خطی تشخیص آن 5/62 تا ۶۲۵ میکرومولار و حد تشخیص 15/0 میلی مولار بود. از این روش رنگ سنجی برای سنجش گلوتاتیون در کپسول های تجاری نیز با موفقیت استفاده شد.

کلیدواژه‌ها


عنوان مقاله [English]

Kinetic properties of a novel graphene/carbon-based peroxidase mimic nanozyme and its application for detection of glutathione in drugs

نویسندگان [English]

  • N. Jahandar Shamami 1
  • S.SH. Shahangiyan 1
  • S.S. S.Afghahi 2
  • N. Salarizadeh 3
  • H. Zamani 1
1 Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
2 Department of Engineering, Faculty of Materials Science and Engineering, Imam Hossein University, Tehran, Iran
3 School of Biology, College of Science, University of Tehran, Tehran, Iran
چکیده [English]

Due to the importance of the improvement of graphene oxide characteristics and wide applications of nanozymes in various fields such as pharmaceutical industry, here, a reduced graphene oxide/multi-walled carbon nanotube nanocomposite was synthesized and after evaluating its peroxidase-like activity, a simple, fast, and practical colorimetric method was developed to detect glutathione in commercial capsules. The nanocomposite exhibited good peroxidase mimic activity, as its affinity to H2O2 was higher when compared with natural peroxidase enzyme. The nanozyme followed Michaelis-Menten kinetics and its catalytic activity was dependent on pH, temperature, and concentration of the catalyst. Due to the ability of glutathione to remove reactive oxygen species and consequently inhibition of peroxidase-like activity, a colorimetric sensor was designed for detection of glutathione with a linear range of 62.5 to 625 μM and detection limit of 0.15 mM. The colorimetric method was successfully used to measure glutathione in commercial capsule.

کلیدواژه‌ها [English]

  • Nanozyme
  • Peroxidase-mimic activity
  • Colorimetric detection
  • Glutathione capsule
[1] Y. Lin, J. Ren, and X. Qu, "Catalytically
active nanomaterials: a promising candidate
for artificial enzymes," Accounts of
chemical research, 47, 1097-1105, 2014.
[2] K. Cai et al., "Aqueous synthesis of porous
platinum nanotubes at room temperature
and their intrinsic peroxidase-like activity,"
Chemical Communications, 49, 6024-6026,
2013.
[3] Y. J. Long, Y. F. Li, Y. Liu, J. J. Zheng, J.
Tang, and C. Z. Huang, "Visual observation
of the mercury-stimulated peroxidase
mimetic activity of gold nanoparticles,"
Chemical Communications, 47, 11939-
11941, 2011.
[4] A.L. Hu et al., "Fluorescent hydrogen
peroxide sensor based on cupric oxide
nanoparticles and its application for glucose
and l-lactate detection," Biosensors and
Bioelectronics, 61, 374-378, 2014.
[5] H. Peng et al., "Fabrication and
multifunctional properties of ultrasmall
water-soluble tungsten oxide quantum
dots," Chemical Communications, 52,
9534-9537, 2016.
[6] G.L. Wang, X.F. Xu, L. Qiu, Y.-M. Dong,
Z.-J. Li, and C. Zhang, "Dual responsive
enzyme mimicking activity of AgX (X= Cl,
Br, I) nanoparticles and its application for
cancer cell detection," ACS applied
materials & interfaces, 6, 6434-6442, 2014.
[7] H. Sun, A. Zhao, N. Gao, K. Li, J. Ren, and
X. Qu, "Deciphering a nanocarbon‐based
artificial peroxidase: chemical identification
of the catalytically active and substrate ‐
binding sites on graphene quantum dots,"
Angewandte Chemie International Edition,
54, 7176-7180, 2015.
[8] R. Li et al., "A novel glucose colorimetric
sensor based on intrinsic peroxidase-like
activity of C60-carboxyfullerenes,"
Biosensors and Bioelectronics, vol. 47, pp.
502-507, 2013.
[9] H.H. Xu et al., "Colorimetric glutathione
assay based on the peroxidase-like activity
of a nanocomposite consisting of platinum
nanoparticles and graphene oxide,"
Microchimica Acta, 184, 3945-3951, 2017.
[10] R. T. Zon, C. Nichols, and L.H. Einhorn,
"Management strategies and outcomes of
germ cell tumor patients with very high
human chorionic gonadotropin levels,"
Journal of clinical oncology, 16, 1294-
1297, 1998.
[11] N. Zhang, W. Ma, D. Han, L. Wang, and T.
Wu, "The fluorescence detection of
glutathione by∙ OH radicals’ elimination
with catalyst of MoS2/rGO under full
spectrum visible light irradiation," Talanta,
144, 551-558, 2015.
[12] V. Georgakilas et al., "Noncovalent
functionalization of graphene and graphene
oxide for energy materials, biosensing,
catalytic, and biomedical applications,"
Chemical reviews, 116, 5464-5519, 2016.
[13] C.I. Justino, A.R. Gomes, A. C. Freitas, A.
C. Duarte, and T.A. Rocha-Santos,
"Graphene based sensors and biosensors,"
TrAC Trends in Analytical Chemistry, 91,
53-66, 2017.
[14] G. Luque, M. Rojas, G. Rivas, and E.
Leiva, "The origin of the catalysis of
hydrogen peroxide reduction by
functionalized graphene surfaces: A density
78 بهار ۱400 |شماره ۱ | سال هشتم
functional theory study," Electrochimica
Acta, 56, 523-530, 2010.
[15] J. Sun, C. Li, Y. Qi, S. Guo, and X. Liang,
"Optimizing colorimetric assay based on
V2O5 nanozymes for sensitive detection of
H2O2 and glucose," Sensors, vol. 16, no. 4,
p. 584, 2016.
[16] S. Stankovich et al., "Graphene-based
composite materials," nature, vol. 442, no.
7100, pp. 282-286, 2006.
[17] Y. Song, X. Wang, C. Zhao, K. Qu, J. Ren,
and X. Qu, "Label ‐ free colorimetric
detection of single nucleotide
polymorphism by using single ‐ walled
carbon nanotube intrinsic peroxidase ‐like
activity," Chemistry–A European Journal,
16, 3617-3621, 2010.
[18] Y. Song, K. Qu, C. Zhao, J. Ren, and X.
Qu, "Graphene oxide: intrinsic peroxidase
catalytic activity and its application to
glucose detection," Advanced Materials, 22,
2206-2210, 2010.
[19] Y.-l. Dong et al., "Graphene oxide–Fe 3 O 4
magnetic nanocomposites with peroxidaselike activity for colorimetric detection of
glucose," Nanoscale, 4, 3969-3976, 2012.
[20] H. Wei and E. Wang, "Nanomaterials with
enzyme-like characteristics (nanozymes):
next-generation artificial enzymes,"
Chemical Society Reviews, vol. 42, no. 14,
pp. 6060-6093, 2013.
[21] J. Feng, P. Huang, S. Shi, K.Y. Deng, and
F.-Y. Wu, "Colorimetric detection of
glutathione in cells based on peroxidaselike activity of gold nanoclusters: a
promising powerful tool for identifying
cancer cells," Analytica chimica acta, 967,
64-69, 2017.
[22] J.F. Li, P.C. Huang, and F.Y. Wu, "Specific
pH effect for selective colorimetric assay of
glutathione using anti-aggregation of labelfree gold nanoparticles," RSC Advances, 7,
13426-13432, 2017.
[23] M. Shamsipur, A. Safavi, and Z.
Mohammadpour, "Indirect colorimetric
detection of glutathione based on its radical
restoration ability using carbon nanodots as
nanozymes," Sensors and Actuators B:
Chemical, 199, 463-469, 2014.
[24] J. Qian, X. Yang, Z. Yang, G. Zhu, H. Mao,
and K. Wang, "Multiwalled carbon
nanotube@ reduced graphene oxide
nanoribbon heterostructure: synthesis,
intrinsic peroxidase-like catalytic activity,
and its application in colorimetric
biosensing," Journal of Materials
Chemistry B, 3, 1624-1632, 2015.
[25] C. J. Murray et al., "Global, regional, and
national disability-adjusted life years
(DALYs) for 306 diseases and injuries and
healthy life expectancy (HALE) for 188
countries, 1990–2013: quantifying the
epidemiological transition," The Lancet,
386, 2145-2191, 2015.
[26] M. Kotal and A. K. Bhowmick,
"Multifunctional hybrid materials based on
carbon nanotube chemically bonded to
reduced graphene oxide," The Journal of
Physical Chemistry C, 117, 25865-25875,
2013.
[27] Q. Chen, C. Liang, X. Zhang, and Y.
Huang, "High oxidase-mimic activity of Fe
nanoparticles embedded in an N-rich
porous carbon and their application for
sensing of dopamine," Talanta, 182, 476-
483, 2018.
[28] A. Hussein, S. Sarkar, D. Oh, K. Lee, and
B. Kim, "Epoxy/p ‐ phenylenediamine
functionalized graphene oxide composites
and evaluation of their fracture toughness
and tensile properties," Journal of Applied
Polymer Science, 133, 13-21,2016.
[29] G. Darabdhara, B. Sharma, M.R. Das, R.
Boukherroub, and S. Szunerits, "Cu-Ag
bimetallic nanoparticles on reduced
graphene oxide nanosheets as peroxidase
mimic for glucose and ascorbic acid
detection," Sensors and Actuators B:
Chemical, vol. 238, pp. 842-851, 2017.
[30] W. Yang, J. Hao, Z. Zhang, and B. Zhang,
"PB@ Co 3 O 4 nanoparticles as both
oxidase and peroxidase mimics and their
application for colorimetric detection of
glutathione," New Journal of Chemistry, 39,
8802-8806, 2015.
[31] L. Liu, B. Du, C. Shang, J. Wang, and E.
Wang, "Construction of surface charge-
79 بهار ۱400 |شماره ۱ | سال هشتم
controlled reduced graphene oxide-loaded
Fe3O4 and Pt nanohybrid for peroxidase
mimic with enhanced catalytic activity,"
Analytica chimica acta, 1014, 77-84, 2018.
[32] S. Cai et al., "Pt 74 Ag 26 nanoparticledecorated ultrathin MoS 2 nanosheets as
novel peroxidase mimics for highly
selective colorimetric detection of H 2 O 2
and glucose," Nanoscale, 8, 3685-3693,
2016.
[33] Y.W. Bao, X.W. Hua, H.H. Ran, J. Zeng,
and F.G. Wu, "Metal-doped carbon
nanoparticles with intrinsic peroxidase-like
activity for colorimetric detection of H 2 O
2 and glucose," Journal of Materials
Chemistry B, 7, 296-304, 2019.
[34] M. Chen et al., "FePt nanoparticlesdecorated graphene oxide nanosheets as
enhanced peroxidase mimics for sensitive
response to H2O2," Materials Science and
Engineering: C, 90, 610-620, 2018.
[35] M. Chen et al., "Novel synthesis of
NiS/MMT/GO nanocomposites with
enhanced peroxidase-like activity for
sensitive colorimetric detection of
glutathione in solution," Advanced
Composites and Hybrid Materials, 1, 612-
623, 2018.
[36] A.X. Zheng, Z.X. Cong, J.-R. Wang, J. Li,
H.-H. Yang, and G.-N. Chen, "Highlyefficient peroxidase-like catalytic activity
of graphene dots for biosensing,"
Biosensors and Bioelectronics, 49, 519-
524, 2013.
[37] M. Chi, S. Chen, M. Zhong, C. Wang, and
X. Lu, "Self-templated fabrication of
FeMnO3 nanoparticle-filled polypyrrole
nanotubes for peroxidase mimicking with a
synergistic effect and their sensitive
colorimetric detection of glutathione,"
Chemical communications, 54, 5827-5830,
2018.
[38] Q. Zhong, Y. Chen, A. Su, and Y. Wang,
"Synthesis of catalytically active carbon
quantum dots and its application for
colorimetric detection of glutathione,"
Sensors and Actuators B: Chemical, 273,
1098-1102, 2018.
[39] H. Zou, T. Yang, J. Lan, and C. Huang,
"Use of the peroxidase mimetic activity of
erythrocyte-like Cu 1.8 S nanoparticles in
the colorimetric determination of
glutathione," Analytical Methods, vol. 9,
no. 5, pp. 841-846, 2017.
[40] G. Liu et al., "Quinone-mediated microbial
synthesis of reduced graphene oxide with
peroxidase-like activity," Bioresource
technology, 149, 503-508, 2013.
[41] Y. Guo, J. Li, and S. Dong, "Hemin
functionalized graphene nanosheets-based
dual biosensor platforms for hydrogen
peroxide and glucose," Sensors and
Actuators B: Chemical, 160, 295-300,
2011.
[42] S. Bi, T. Zhao, X. Jia, and P. He, "Magnetic
graphene oxide-supported hemin as
peroxidase probe for sensitive detection of
thiols in extracts of cancer cells,"
Biosensors and Bioelectronics, 57, 110-
116, 2014.