بررسی تأثیر جهت‌گیری و تعداد واحدهای بورن- نیتروژن در موقعیت اسپوک نانوکاسه سومانن روی خواص آن

نوع مقاله : مقاله پژوهشی

نویسندگان

Iran- Lorestan- Khorramabad Iran- Lorestan- Khorramabad

چکیده

چکیده: در این تحقیق، پیوندهای C=C در موقعیت اسپوک نانوکاسه سومانن با واحدهای B-N، در دو جهت‌گیری متفاوت جایگزین شده‌اند. بررسی محاسباتی ساختارها با استفاده از نظریه تابعی چگالی (DFT) انجام شده است. تأثیر جهت‌گیری واحدهای B-N و همچنین تعداد آنها روی خواص اپتیکی غیرخطی (NLO) سومانن بررسی شده است. ساختارهای دوپ شده تغییرات چشمگیری در ساختار هندسی، اروماتیسیته و مقدار اولین فراقطبش پذیری (β0) نشان میدهند. در الگوی جهت‌گیری BN، با افزایش تعداد واحدهای BN، عمق نانوکاسه و گشتاور دوقطبی به طور خطی کاهش یافته و در ساختار 6BN به 0.0 D و 0.0 Å می‌رسند. در جهت‌گیری دیگر (NB)، با افزایش تعداد واحدهای N-B، عمق نانوکاسه و گشتاور دو‌قطبی به طور خطی افزایش یافته و در ساختار 6NB به مقدار بیشینه (5.0 D و 1.808 Å) میرسند. مقدار انرژی گپ (Egap) در جایگزینی BN/CC هر دو جهت‌گیری کمتر از مولکول سومانن است. هم چنین کاهش مقادیر میانگین NICS ساختارها نشان میدهد که آروماتیسیته ساختارهای BN-سومانن نسبت به نانوکاسه سومانن کاهش یافته است. خواص اپتیکی غیر خطی همه ساختارها در هر دو جهت‌گیری افزایش یافته است، به طوریکه مقدار β0 در ساختار 2BN-3 برابر با 953.1 au است که نسبت به مولکول اصلی 12 برابر شده است. نتایج این کار تحقیقاتی میتواند در طراحی مواد اپتیکی غیر خطی جدید مفید باشد.

کلیدواژه‌ها


[1] T. Tanikawa, M. Saito, J. D. Guo, S. Nagase, “Synthesis, structures and optical properties of trisilasumanene and its related compounds,” Organic and biomolecular chemistry, 9(6), 1731-1735, 2011.
[2] H. Sakurai, T. Daiko, T. Hirao, “A synthesis of sumanene, a fullerene fragment,” Science, 301, 1878-1879, 2003.
[3] T.C. Wu, H.J. Hsin, M.Y. Kuo, C.H. Li, Y.T. Wu, “Synthesis and structural analysis of a highly curved buckybowl containing corannulene and sumanene fragments,” Journal of the American Chemical Society, 133, 16319-16321, 2011.‏
[4] L.T. Scott, M.M. Hashemi, D. T. Meyer, H. B. Warren, “Corannulene. A convenient new synthesis,” Journal of the American Chemical Society, 113, 7082-7084, 1991.
[5] Z. Biglari, “Theoretical investigation of nonlinear optical properties of functionalized corannulene with B and N atoms,” Physica E: Low-dimensional Systems and Nanostructures, 115, 113656, 2020.
[6] G. Mehta, S. R. Shahk, K. Ravikumarc, “Towards the design of tricyclopenta [def, jkl, pqr] triphenylene (‘sumanene’): A ‘bowl-shaped’ hydrocarbon featuring a structural motif present in C60 (buckminsterfullerene),” Journal of the Chemical Society, Chemical Communications, 12, 1006-1008, 1993.
[7] A. Szumna, “Inherently chiral concave molecules—from synthesis to applications,” Chemical Society Reviews, 39, 4274-4285,‏ 2010.
[8] T.D. Della, C.H. Suresh, “Sumanene: an efficient π-bowl for dihydrogen storage,” Physical Chemistry Chemical Physics, 20, 6227-6235, 2018.
[9] S. Armaković, S. J. Armaković, J. P. Šetrajčić, S. K. Jaćimovski, V. Holodkov, “Sumanene and its adsorption properties towards CO, CO2 and NH3 molecules,” Journal of molecular modeling, 20, 2170, 2014.
‏[10] E. Tahmasebi, Z. Biglari, E. Shakerzadeh, “Theoretical insight into the impact of sumanene functionalization with BH and NH groups on its ozone addition features,” Vacuum, 136, 82-90, 2017.
‏[12] S. Armaković, S.J. Armaković, J.P. Šetrajčić, V. Holodkov, “Aromaticity, response, and nonlinear optical properties of sumanene modified with boron and nitrogen atoms,” Journal of molecular modeling, 20, 2538, 2014.‏
‏[13]  X. B. Zhang, J.K. Feng, A.M. Ren, X. Zhou, C. C. Sun, “A comparative study of the two-photon absorption properties of a new three-branched molecule—sumanene 3O derivative and relative molecules,” Optical Materials, 29, 199-205, 2006.
‏[14] N. Otero, C. Pouchan, P. Karamanis, “Quadratic nonlinear optical (NLO) properties of borazino (B3N3)-doped nanographenes,” Journal of Materials Chemistry C, 5, 8273-8287, 2017.
[15] P.G. Campbell, A. J. Marwitz, S. Y. Liu, “Recent advances in azaborine chemistry,” Angewandte Chemie International Edition, 51, 6074-6092, 2012.
[16] M.J. Bosdet, W. E. Piers, “BN as a CC substitute in aromatic systems,” Canadian Journal of Chemistry, 87, 8-29, 2009.
[17] Q. Hou, L. Liu, S. K. Mellerup, N. Wang, T. Peng, P. Chen, S. Wang, “Stimuli-Responsive B/N Lewis Pairs Based on the Modulation of B–N Bond Strength,” Organic letters, 20, 6467-6470, 2018.
[18] J. Zhang, F. Liu, Z. Sun, C. Li, Q. Zhang, C. Zhang, Z. Liu, X. Liu, “Synthesis, characterization and properties of aryl-fused bis-BN dihydropyrenes,” Chemical Communications, 54, 8178-8181, 2018.
[19] C.A. Jaska, W. E. Piers, R. McDonald, M. Parvez, “Synthesis, characterization, and fluorescence behavior of twisted and planar B2N2- quaterphenyl analogues,” The Journal of Organic Chemistry, 72, 5234-5243, 2007.
[20] S. Xu, T.C. Mikulas, L. N. Zakharov, D. A. Dixon, S. Y. Liu, “Boron-Substituted 1,3-Dihydro-1,3-azaborines: Synthesis, Structure, and Evaluation of Aromaticity,” Angewandte Chemie International Edition, 52, 7527-7531, 2013.
[21] H. Braunschweig, K. Geetharani, J.O.C. Jimenez-Halla, M. Schaefer, “Direct Synthetic Route to Functionalized 1, 2-Azaborinines,” Angewandte Chemie International Edition, 53, 3500-3504, 2014.
[22] M. Baranac-Stojanović, “4-Electron BN Monocycles: Stability and (Anti) aromaticity,” European Journal of Organic Chemistry, 34, 5163-5169, 2017.
[23] Z. Zhong, X.Y. Wang, F. D. Zhuang, N. Ai, J. Wang, J. Y. Wang, J. Pei, J. Peng, Y. Cao, “Curved BN-embedded nanographene for application in organic solar cells,” Journal of Materials Chemistry A, 4, 15420-15425, 2016.
[24] E.R. Abbey, S.Y. Liu, “BN isosteres of indole,” Organic & biomolecular chemistry, 11, 2060-2069, 2013.
[25] T. Hatakeyama, S. Hashimoto, S. Seki, M. Nakamura, “Synthesis of BN-fused polycyclic aromatics via tandem intramolecular electrophilic arene borylation,” Journal of the American Chemical Society, 133, 18614-18617, 2011.
[26] M.J.S. Dewar, V.P. Kubba, R. Pettit, “624. New heteroaromatic compounds. Part I. 9-Aza-10-boraphenanthrene,” Journal of the Chemical Society (Resumed), 3073-3076, 1958.
[27] G. Li, Y. Chen, Y. Qiao, Y. Lu, G. Zhou, “Charge Transfer Switching in Donor–Acceptor Systems Based on BN-Fused Naphthalimides,” The Journal of organic chemistry, 83, 5577-5587, 2018.
[28] C. J. Sun, N. Wang, T. Peng, X. Yin, S. Wang, P. Chen, “BN-Functionalized Benzotrithiophene-Based Azaborines: Synthesis, Structures, and Anion Binding Properties,” Inorganic chemistry, 58, 3591-3595, 2019.
[29] J. S. Ishibashi, C. Darrigan, A. Chrostowska, B. Li, S. Y. Liu, “A BN anthracene mimics the electronic structure of more highly conjugated systems,” Dalton Transactions, 48, 2807-2812, 2019.
[30] S. Nakatsuka, N. Yasuda, T. Hatakeyama, “Four-step synthesis of B2N2-embedded corannulene,” Journal of the American Chemical Society, 140, 13562-13565, 2018.
[31] Y. García-Rodeja, I. Fernández, “Impact of C=C/B−N Replacement on the Diels–Alder Reactivity of Curved Polycyclic Aromatic Hydrocarbons,” Chemistry–A European Journal, 25, 9771-9779, 2019.
[32] Z. Biglari, V. Fallah, “Influence of BN-orientation pattern at spoke location of corannulene on electro-optical properties and aromaticity,” Journal of Molecular Structure, 128730, 2020.
[33] A.D. Buckingham, “Permanent and induced molecular moments and long-range intermolecular forces,” Advances in Chemical Physics: Intermolecular Forces, 107-142, 1967.‏
[34] A.D. McLean, M. oshimine, “Theory of molecular polarizabilities,” The Journal of Chemical Physics, 47, 1927-1935, 1967.
[35] P.V.R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao, N. J. R. van Eikema Hommes, “Nucleus-independent chemical shifts: a simple and efficient aromaticity probe,” Journal of the American Chemical Society, 118, 6317-6318, 1996.
[36] Z. Chen, C.S. Wannere, C. Corminboeuf, R. Puchta, P. V. R. Schleyer, “Nucleus-independent chemical shifts (NICS) as an aromaticity criterion,” Chemical reviews, 105, 3842-3888, 2005.