بررسی تأثیر جهت‌گیری و تعداد واحدهای بورن- نیتروژن در موقعیت اسپوک نانوکاسه سومانن روی خواص آن

نوع مقاله : مقاله پژوهشی

نویسندگان

Iran- Lorestan- Khorramabad Iran- Lorestan- Khorramabad

چکیده

چکیده: در این تحقیق، پیوندهای C=C در موقعیت اسپوک نانوکاسه سومانن با واحدهای B-N، در دو جهت‌گیری متفاوت جایگزین شده‌اند. بررسی محاسباتی ساختارها با استفاده از نظریه تابعی چگالی (DFT) انجام شده است. تأثیر جهت‌گیری واحدهای B-N و همچنین تعداد آنها روی خواص اپتیکی غیرخطی (NLO) سومانن بررسی شده است. ساختارهای دوپ شده تغییرات چشمگیری در ساختار هندسی، اروماتیسیته و مقدار اولین فراقطبش پذیری (β0) نشان میدهند. در الگوی جهت‌گیری BN، با افزایش تعداد واحدهای BN، عمق نانوکاسه و گشتاور دوقطبی به طور خطی کاهش یافته و در ساختار 6BN به 0.0 D و 0.0 Å می‌رسند. در جهت‌گیری دیگر (NB)، با افزایش تعداد واحدهای N-B، عمق نانوکاسه و گشتاور دو‌قطبی به طور خطی افزایش یافته و در ساختار 6NB به مقدار بیشینه (5.0 D و 1.808 Å) میرسند. مقدار انرژی گپ (Egap) در جایگزینی BN/CC هر دو جهت‌گیری کمتر از مولکول سومانن است. هم چنین کاهش مقادیر میانگین NICS ساختارها نشان میدهد که آروماتیسیته ساختارهای BN-سومانن نسبت به نانوکاسه سومانن کاهش یافته است. خواص اپتیکی غیر خطی همه ساختارها در هر دو جهت‌گیری افزایش یافته است، به طوریکه مقدار β0 در ساختار 2BN-3 برابر با 953.1 au است که نسبت به مولکول اصلی 12 برابر شده است. نتایج این کار تحقیقاتی میتواند در طراحی مواد اپتیکی غیر خطی جدید مفید باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of BN orientation effect and its number at spoke position of sumanene nanobowl on its properties

نویسندگان [English]

  • Solmaz Abdolahi Joneghani
  • Zeinab Biglari
Iran- Lorestan- Khorramabad Iran- Lorestan- Khorramabad
چکیده [English]

Abstract: : In this study, the C=C bonds at spoke position of sumanene nanobowl have been replaced with B-N units in two different orientation patterns. The computational studies have been investigated employing the density functional theory (DFT). The effect of orientation of BN units and also the number of them have studied on nonlinear optical (NLO) properties of sumanene. The doped structures show the significant changes in geometric structure, aromaticity and the first static hyperpolarizability (β0) values. In BN-orientation, with increasing number of BN units, bowl depth and dipole moment decrease linearly and reach to 0.0 Å and 0.0 D for 6BN structure. In another orientation (NB), bowl depth and dipole moment increase and reach to maximum values (1.808 Å and 5.0 D) in 6NB structure. It is found that the energy gap (Egap) is narrowed in BN/CC isosterism relative to the pristine sumanene. Also, the decrease of average NICS (Nucleus independent chemical shift) values indicate that aromaticity of BN-sumanene structures has decreased compared to the sumanene nanobowl. The NLO properties of all structures has increased in both directions, so that the value of β0 in the 2BN-3 structure is 953.1 au, which is 12 times that of the sumanene. The results of this research can be useful in designing new NLO materials.

کلیدواژه‌ها [English]

  • “sumanene nanobowl”
  • “BN orientation pattern”
  • “؛ NLO properties”
  • “aromaticity”. "DFT"
[1] T. Tanikawa, M. Saito, J. D. Guo, S. Nagase, “Synthesis, structures and optical properties of trisilasumanene and its related compounds,” Organic and biomolecular chemistry, 9(6), 1731-1735, 2011.
[2] H. Sakurai, T. Daiko, T. Hirao, “A synthesis of sumanene, a fullerene fragment,” Science, 301, 1878-1879, 2003.
[3] T.C. Wu, H.J. Hsin, M.Y. Kuo, C.H. Li, Y.T. Wu, “Synthesis and structural analysis of a highly curved buckybowl containing corannulene and sumanene fragments,” Journal of the American Chemical Society, 133, 16319-16321, 2011.‏
[4] L.T. Scott, M.M. Hashemi, D. T. Meyer, H. B. Warren, “Corannulene. A convenient new synthesis,” Journal of the American Chemical Society, 113, 7082-7084, 1991.
[5] Z. Biglari, “Theoretical investigation of nonlinear optical properties of functionalized corannulene with B and N atoms,” Physica E: Low-dimensional Systems and Nanostructures, 115, 113656, 2020.
[6] G. Mehta, S. R. Shahk, K. Ravikumarc, “Towards the design of tricyclopenta [def, jkl, pqr] triphenylene (‘sumanene’): A ‘bowl-shaped’ hydrocarbon featuring a structural motif present in C60 (buckminsterfullerene),” Journal of the Chemical Society, Chemical Communications, 12, 1006-1008, 1993.
[7] A. Szumna, “Inherently chiral concave molecules—from synthesis to applications,” Chemical Society Reviews, 39, 4274-4285,‏ 2010.
[8] T.D. Della, C.H. Suresh, “Sumanene: an efficient π-bowl for dihydrogen storage,” Physical Chemistry Chemical Physics, 20, 6227-6235, 2018.
[9] S. Armaković, S. J. Armaković, J. P. Šetrajčić, S. K. Jaćimovski, V. Holodkov, “Sumanene and its adsorption properties towards CO, CO2 and NH3 molecules,” Journal of molecular modeling, 20, 2170, 2014.
‏[10] E. Tahmasebi, Z. Biglari, E. Shakerzadeh, “Theoretical insight into the impact of sumanene functionalization with BH and NH groups on its ozone addition features,” Vacuum, 136, 82-90, 2017.
‏[12] S. Armaković, S.J. Armaković, J.P. Šetrajčić, V. Holodkov, “Aromaticity, response, and nonlinear optical properties of sumanene modified with boron and nitrogen atoms,” Journal of molecular modeling, 20, 2538, 2014.‏
‏[13]  X. B. Zhang, J.K. Feng, A.M. Ren, X. Zhou, C. C. Sun, “A comparative study of the two-photon absorption properties of a new three-branched molecule—sumanene 3O derivative and relative molecules,” Optical Materials, 29, 199-205, 2006.
‏[14] N. Otero, C. Pouchan, P. Karamanis, “Quadratic nonlinear optical (NLO) properties of borazino (B3N3)-doped nanographenes,” Journal of Materials Chemistry C, 5, 8273-8287, 2017.
[15] P.G. Campbell, A. J. Marwitz, S. Y. Liu, “Recent advances in azaborine chemistry,” Angewandte Chemie International Edition, 51, 6074-6092, 2012.
[16] M.J. Bosdet, W. E. Piers, “BN as a CC substitute in aromatic systems,” Canadian Journal of Chemistry, 87, 8-29, 2009.
[17] Q. Hou, L. Liu, S. K. Mellerup, N. Wang, T. Peng, P. Chen, S. Wang, “Stimuli-Responsive B/N Lewis Pairs Based on the Modulation of B–N Bond Strength,” Organic letters, 20, 6467-6470, 2018.
[18] J. Zhang, F. Liu, Z. Sun, C. Li, Q. Zhang, C. Zhang, Z. Liu, X. Liu, “Synthesis, characterization and properties of aryl-fused bis-BN dihydropyrenes,” Chemical Communications, 54, 8178-8181, 2018.
[19] C.A. Jaska, W. E. Piers, R. McDonald, M. Parvez, “Synthesis, characterization, and fluorescence behavior of twisted and planar B2N2- quaterphenyl analogues,” The Journal of Organic Chemistry, 72, 5234-5243, 2007.
[20] S. Xu, T.C. Mikulas, L. N. Zakharov, D. A. Dixon, S. Y. Liu, “Boron-Substituted 1,3-Dihydro-1,3-azaborines: Synthesis, Structure, and Evaluation of Aromaticity,” Angewandte Chemie International Edition, 52, 7527-7531, 2013.
[21] H. Braunschweig, K. Geetharani, J.O.C. Jimenez-Halla, M. Schaefer, “Direct Synthetic Route to Functionalized 1, 2-Azaborinines,” Angewandte Chemie International Edition, 53, 3500-3504, 2014.
[22] M. Baranac-Stojanović, “4-Electron BN Monocycles: Stability and (Anti) aromaticity,” European Journal of Organic Chemistry, 34, 5163-5169, 2017.
[23] Z. Zhong, X.Y. Wang, F. D. Zhuang, N. Ai, J. Wang, J. Y. Wang, J. Pei, J. Peng, Y. Cao, “Curved BN-embedded nanographene for application in organic solar cells,” Journal of Materials Chemistry A, 4, 15420-15425, 2016.
[24] E.R. Abbey, S.Y. Liu, “BN isosteres of indole,” Organic & biomolecular chemistry, 11, 2060-2069, 2013.
[25] T. Hatakeyama, S. Hashimoto, S. Seki, M. Nakamura, “Synthesis of BN-fused polycyclic aromatics via tandem intramolecular electrophilic arene borylation,” Journal of the American Chemical Society, 133, 18614-18617, 2011.
[26] M.J.S. Dewar, V.P. Kubba, R. Pettit, “624. New heteroaromatic compounds. Part I. 9-Aza-10-boraphenanthrene,” Journal of the Chemical Society (Resumed), 3073-3076, 1958.
[27] G. Li, Y. Chen, Y. Qiao, Y. Lu, G. Zhou, “Charge Transfer Switching in Donor–Acceptor Systems Based on BN-Fused Naphthalimides,” The Journal of organic chemistry, 83, 5577-5587, 2018.
[28] C. J. Sun, N. Wang, T. Peng, X. Yin, S. Wang, P. Chen, “BN-Functionalized Benzotrithiophene-Based Azaborines: Synthesis, Structures, and Anion Binding Properties,” Inorganic chemistry, 58, 3591-3595, 2019.
[29] J. S. Ishibashi, C. Darrigan, A. Chrostowska, B. Li, S. Y. Liu, “A BN anthracene mimics the electronic structure of more highly conjugated systems,” Dalton Transactions, 48, 2807-2812, 2019.
[30] S. Nakatsuka, N. Yasuda, T. Hatakeyama, “Four-step synthesis of B2N2-embedded corannulene,” Journal of the American Chemical Society, 140, 13562-13565, 2018.
[31] Y. García-Rodeja, I. Fernández, “Impact of C=C/B−N Replacement on the Diels–Alder Reactivity of Curved Polycyclic Aromatic Hydrocarbons,” Chemistry–A European Journal, 25, 9771-9779, 2019.
[32] Z. Biglari, V. Fallah, “Influence of BN-orientation pattern at spoke location of corannulene on electro-optical properties and aromaticity,” Journal of Molecular Structure, 128730, 2020.
[33] A.D. Buckingham, “Permanent and induced molecular moments and long-range intermolecular forces,” Advances in Chemical Physics: Intermolecular Forces, 107-142, 1967.‏
[34] A.D. McLean, M. oshimine, “Theory of molecular polarizabilities,” The Journal of Chemical Physics, 47, 1927-1935, 1967.
[35] P.V.R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao, N. J. R. van Eikema Hommes, “Nucleus-independent chemical shifts: a simple and efficient aromaticity probe,” Journal of the American Chemical Society, 118, 6317-6318, 1996.
[36] Z. Chen, C.S. Wannere, C. Corminboeuf, R. Puchta, P. V. R. Schleyer, “Nucleus-independent chemical shifts (NICS) as an aromaticity criterion,” Chemical reviews, 105, 3842-3888, 2005.