سنتز و بررسی کارایی فتوکاتالیستی نانوچندسازهSnO2 دکوریت شده با ZnO تخریب در 2و4-دی‌کلروفنل

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی شیمی، دانشکده فنی، دانشگاه گیلان، رشت

چکیده

در این پژوهش، نانوذرات SnO2 خالص و SnO2-ZnO با نسبت وزنی (5/0: 1)، (1:1)، (1:2) و (1:3) به روش سل‎ژل سنتز شدند. ساختار، ریخت­ شناسی، طیف جذب و فعالیت فتوکاتالیستی نانوذرات با استفاده از آنالیزها XRD، FE-SEM و
طیف­ سنجی UV-Vis مورد بررسی قرار گرفت. بر اساس آنالیز XRD، اندازه کریستالی نانوذرات SnO2 و SnO2-ZnO به ترتیب 14 و 10 نانومتر به دست آمد. تصاویر FE-SEM نشان داد که اندازه ذرات در حدود 30-10 نانومتر است. فعالیت فتوکاتالیستی نانوذرات با تخریب آلاینده آلی 2و4-دی‌کلروفنل تحت تابش فرابنفش (UV) بررسی شد. نتایج تجربی نشان داد که نانوذرات (1:2) SnO2-ZnO  با تخریب برابر با 44/56 درصد دارای بالاترین عملکرد فتوکاتالیستی است. بررسی‌های سینتیکی نشان داد که تخریب فتوکاتالیستی 2و4-دی‌کلروفنل از معادله سینتیک مرتبه اول پیروی می‌کند.

کلیدواژه‌ها


عنوان مقاله [English]

Synthesis and evaluation of photocatalytic performance of ZnO-decorated SnO2 nanocomposite in degradation of 2,4-diclorophenol

نویسندگان [English]

  • zahra abdollahi jubeni
  • seyed siamak ashraf talesh
Department of Chemical Engineering, Faculty of Engineering, University of Guilan, Rasht
چکیده [English]

In this research, pure SnO
2
and SnO
2
-ZnO nanoparticles were synthesized at several weight ratio (1:0.5), (1:1), (1:2) and (1:3) by sol-gel method. The structure, morphology, absorption spectra and photocatalytic activity of nanoparticles were investigated using XRD, FE-SEM and UV-Vis spectrophotometer. According to XRD analysis, the crystalline size of SnO
2
and SnO
2
-ZnO nanoparticles were calculated 14 and 10 nm, respectively. The FE-SEM images showed that the particle size was about 10-30nm. Photocatalytic activity of nanoparticles was measured by degradation of 2,4-diclorophenol as an organic pollutant under ultraviolet (UV) radiation. Experimental results showed that SnO
2
-ZnO (1:2) nanoparticles represented the highest photocatalytic performance equal to 56.44%. Kinetic studies showed that the degradation of 2,4-dichlorophenol corresponds well to first-order reaction.

[1]        K. Chanderia, S. Kumar, J. Sharma, R. Ameta,  P. B. Punjabi, “Degradation of Sunset Yellow FCF using copper loaded bentonite and H2O2 as photo-Fenton like reagent,” Arabian Journal of Chemistry, S205-S211, 2017.
[2]        M. Ormad, J. Ovelleiro,  J. Kiwi, “Photocatalytic degradation of concentrated solutions of 2, 4-dichlorophenol using low energy light: identification of intermediates,” Applied Catalysis B: Environmental, 3, 157-166, 2001.
[3]        L. Gu, Z. Chen, C. Sun, B. Wei,  X. Yu, “Photocatalytic degradation of 2, 4-dichlorophenol using granular activated carbon supported TiO2,” Desalination, 1-3, 107-112, 2010.
[4]        Y. Pi, L. Zhang,  J. Wang, “The formation and influence of hydrogen peroxide during ozonation of para-chlorophenol,” Journal of hazardous materials, 3, 707-712, 2007.
[5]        I. Sciences International,  R. T. Institute، Toxicological Profile for Chlorophenols،  US Department of Health and Human Services, Public Health Service, Agency,1999.
[6]        M. Ba-Abbad, A. Kadhum, A. B. Mohamad, M. S. Takriff,  K. Sopian, “Solar photocatalytic degradation of environmental pollutants using ZnO prepared by sol-gel: 2, 4-dichlorophenol as case study,” Int J Thermal Environmental Eng, 37-42, 2010.
[7]        M. Czaplicka, “Sources and transformations of chlorophenols in the natural environment,” Science of the Total Environment, 1-3, 21-39, 2004.
[8]        J. Bandara, J. Mielczarski, A. Lopez,  J. Kiwi, “Sensitized degradation of chlorophenols on iron oxides induced by visible light: comparison with titanium oxide,” Applied Catalysis B: Environmental, 4, 321-333, 2001.
[9]        P. H. Howard، Handbook of environmental degradation rates،  CRC Press,1991.
[10]      A. Gholizadeh, M. Kermani, M. Gholami,  M. FarzadkiaM, “Comparative investigation of 2-ChloropHenol and 4-Chrorophenol removal using granulated activated Carbon and Rice Husk Ash,” Tolooebehdasht, 3, 66-78, 2013.
[11]      D. Rajamanickam,  M. Shanthi, “Photocatalytic degradation of an organic pollutant by zinc oxide–solar process,” Arabian Journal of Chemistry, S1858-S1868, 2016.
[12]      B. Bayarri, J. Gimenez, D. Curco,  S. Esplugas, “Photocatalytic degradation of 2, 4-dichlorophenol by TiO2/UV: kinetics, actinometries and models,” Catalysis Today, 3-4, 227-236, 2005.
[13]      L. Jiang, X. Yuan, G. Zeng, Z. Wu, J. Liang, X. Chen, L. Leng, H. Wang,  H. Wang, “Metal-free efficient photocatalyst for stable visible-light photocatalytic degradation of refractory pollutant,” Applied Catalysis B: Environmental, 715-725, 2018.
[14]      A. Ghaderi, S. Abbasi,  F. Farahbod, “Synthesis of SnO2 and ZnO nanoparticles and SnO2-ZnO hybrid for the photocatalytic oxidation of methyl orange,” Iranian Journal of Chemical Engineering (IJChE), 3, 96-105, 2015.
[15]      X. Chen,  S. S. Mao, “Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications,” Chemical reviews, 7, 2891-2959, 2007.
[16]      W. Wang, J. Zhang, F. Chen, D. He,  M. Anpo, “Preparation and photocatalytic properties of Fe3+-doped Ag@ TiO2 core–shell nanoparticles,” Journal of Colloid and Interface Science, 1, 182-186, 2008.
[17]      N. Jallouli, K. Elghniji, H. Trabelsi,  M. Ksibi, “Photocatalytic degradation of paracetamol on TiO2 nanoparticles and TiO2/cellulosic fiber under UV and sunlight irradiation,” Arabian journal of Chemistry, S3640-S3645, 2017.
[18]      A. Ayati, A. Ahmadpour, F. F. Bamoharram, M. M. Heravi,  H. Rashidi, “Photocatalytic synthesis of gold nanoparticles using preyssler acid and their photocatalytic activity,” Chinese Journal of Catalysis, 6-8, 978-982, 2011.
[19]      S. Abbasi,  M. Hasanpour, “The effect of pH on the photocatalytic degradation of methyl orange using decorated ZnO nanoparticles with SnO2 nanoparticles,” Journal of Materials Science: Materials in Electronics, 2, 1307-1314, 2017.
[20]      J. Lin, Z. Luo, J. Liu,  P. Li, “Photocatalytic degradation of methylene blue in aqueous solution by using ZnO-SnO2 nanocomposites,” Materials Science in Semiconductor Processing, 24-31, 2018.
[21]      H. Wang, S. Baek, J. Lee,  S. Lim, “High photocatalytic activity of silver-loaded ZnO-SnO2 coupled catalysts,” Chemical Engineering Journal, 3, 355-361, 2009.
[22]      E. Mugunthan, M. Saidutta,  P. Jagadeeshbabu, “Photocatalytic degradation of diclofenac using TiO2–SnO2 mixed oxide catalysts,” Environmental technology, 7, 929-941, 2019.
[23]      M. Taghavi, M. Tabatabaee, M. H. Ehrampoush, M. T. Ghaneian, M. Afsharnia, A. Alami,  J. Mardaneh, “Synthesis, characterization and photocatalytic activity of TiO2/ZnO-supported phosphomolybdic acid nanocomposites,” Journal of Molecular Liquids, 546-553, 2018.
[24]      Z. Sarteep, A. Ebrahimian Pirbazari,  M. A. Aroon, “Silver doped TiO2 nanoparticles: preparation, characterization and efficient degradation of 2, 4-dichlorophenol under visible light,” Journal of Water and Environmental Nanotechnology, 2, 135-144, 2016.
[25]      J.-C. Sin, S.-M. Lam, K.-T. Lee,  A. R. Mohamed, “Photocatalytic performance of novel samarium-doped spherical-like ZnO hierarchical nanostructures under visible light irradiation for 2, 4-dichlorophenol degradation,” Journal of colloid and interface science, 40-49, 2013.
[26]      E. Sherly, J. J. Vijaya,  L. J. Kennedy, “Visible-light-induced photocatalytic performances of ZnO–CuO nanocomposites for degradation of 2, 4-dichlorophenol,” Chinese Journal of Catalysis, 8, 1263-1272, 2015.
[27]      L. Xu, F. Xian, Y. Zhang, W. Wang, K. Qiu,  J. Xu, “Synthesis of ZnO-decorated SnO2 nanopowder with enhanced photocatalytic performance,” Optik, 162965, 2019.
[28]      R. Mahdavi,  S. S. A. Talesh, “The effect of ultrasonic irradiation on the structure, morphology and photocatalytic performance of ZnO nanoparticles by sol-gel method,” Ultrasonics Sonochemistry, 504-510, 2017.
[29]      W. Ali, H. Ullah, A. Zada, M. K. Alamgir, W. Muhammad, M. J. Ahmad,  A. Nadhman, “Effect of calcination temperature on the photoactivities of ZnO/SnO2 nanocomposites for the degradation of methyl orange,” Materials Chemistry and Physics, 259-266, 2018.
[30]      Y. T. Prabhu, K. V. Rao, V. S. S. Kumar,  B. S. Kumari, “Synthesis of ZnO nanoparticles by a novel surfactant assisted amine combustion method,” Advances in Nanoparticles, 01, 45, 2013.
[31]      M. Rezaei,  S. Salem, “Photocatalytic activity enhancement of anatase–graphene nanocomposite for methylene removal: degradation and kinetics,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 41-49, 2016.
[32]      S. Abbasi, S. M. Zebarjad,  S. H. N. Baghban, “Decorating and filling of multi-walled carbon nanotubes with TiO 2 nanoparticles via wet chemical method,” 2013.
[33]      D. Astruc، Nanoparticles and catalysis،  John Wiley & Sons, 2008.
[34]      D. Liu, J. Pan, J. Tang, W. Liu, S. Bai,  R. Luo, “Ag decorated SnO2 nanoparticles to enhance formaldehyde sensing properties,” Journal of Physics and Chemistry of Solids, 36-43, 2019.
[35]      M. Rauf, M. Meetani,  S. Hisaindee, “An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with selective transition metals,” Desalination, 1-3, 13-27, 2011.
[36]      R. Mahdavi,  S. S. A. Talesh, “Enhancement of ultrasound-assisted degradation of Eosin B in the presence of nanoparticles of ZnO as sonocatalyst,” Ultrasonics sonochemistry, 230-240, 2019.
[37]      C.-J. Chang, C.-Y. Lin,  M.-H. Hsu, “Enhanced photocatalytic activity of Ce-doped ZnO nanorods under UV and visible light,” Journal of the Taiwan Institute of Chemical Engineers, 4, 1954-1963, 2014.
[38]      R. Nagaraja, N. Kottam, C. Girija,  B. Nagabhushana, “Photocatalytic degradation of Rhodamine B dye under UV/solar light using ZnO nanopowder synthesized by solution combustion route,” Powder technology, 91-97, 2012.
[39]      J. S. Lee, O. S. Kwon,  J. Jang, “Facile synthesis of SnO2 nanofibers decorated with N-doped ZnO nanonodules for visible light photocatalysts using single-nozzle co-electrospinning,” Journal of Materials Chemistry, 29, 14565-14572, 2012.