سنتز نانوکربن‌فعال مغناطیسی (Fe3O4/AC) با استفاده از ضایعات گیاه کتان به روش سبز به‌عنوان جاذب آنتی‌بیوتیک سفکسیم و بهینه‌سازی پارامترهای مؤثر به روش‌های تاگوچی و بکس-بکمن

نویسندگان

گروه شیمی، دانشکده علوم پایه، دانشگاه آیت الله بروجردی، بروجرد، ایران

چکیده

در این پژوهش، با استفاده از ضایعات گیاه کتان کربن استخراج و عملیات فعال‌سازی کربن تهیه شده، با استفاده از هیدروکسید پتاسیم انجام شد. برای مغناطیسی کردن کربن فعال تهیه شده از نانوذرات مغناطیسی Fe3O4به روش درجا استفاده شد. از کربن فعال مغناطیسی (MGAC) برای حذف آنتی‌بیوتیک سفکسیم به‌کار گرفته شد. نتیجه‌ها نشان داد که کربن فعال مغناطیسی در ابعاد نانوتشکیل شده است و دارای سطح ویژه شده 23/112 مترمربع بر گرم است که عددی مطلوب و قابل قبول است. برای بهینه‌سازی عامل‌های مهم در جذب سفکسیم روی جاذب کربن فعال مغناطیسی از طراحی آزمایش به‌وسیله‌ی نرم‌افزار Design Expert 7 و به کمک روش Response Surface استفاده شد. نخست یک پیش‌طراحی به‌کمک روش تاگوچی انجام شد که نتیجه‌ها نشان داد که دو عامل غلظت اولیه جذب شونده و زمان تماس تأثیر چندانی بر مقدار جذب ندارند که از آن‌ها صرف‌نظر شد. سپس به کمک روش باکس-بکمن تأثیر سه عامل موثر pH، مقدار جاذب (کمترین مقدار ممکن) و دما بررسی شد که مقدارهای بهینه آن‌ها به‌ترتیب ۲، 02/0 گرم و 85 درجه سانتی‌گراد به‌دست آمد که با لحاظ کردن این مقدارها، بهینه مقدار جذب دارو توسط جاذب برابر با 33/95 درصد است.

کلیدواژه‌ها


عنوان مقاله [English]

Synthesis of magnetic activated nanocarbons (Fe3O4 / AC) using flaxseed waste as the green antibiotic adsorbent of cefixime and optimization of effective parameters by Taguchi and Bax-Beckman methods

نویسندگان [English]

  • mohammad hossein fekri
  • maryam razavimehr
  • samaneh isanejad moharameh
  • mozhgan yari
چکیده [English]

In this study, carbon was extracted using flaxseed plant waste and activated carbon was obtained by potassium hydroxide. Magnetic Fe
3
O
4
nanoparticles were loaded by in situ method onto activated carbon. Magnetic activated carbon (MGAC) was used to remove the antibiotic Cefixime. The results show that magnetically activated carbon is formed in nanoscale and has a specific surface area of 11.23 m
2
g
-1
, which is a desirable and acceptable. Optimization of the important factors in the adsorption of cefixime on magnetic activated carbon was performed by Design Expert 7 software. First, a pre-design was performed using Taguchi method, which showed that the two factors of initial adsorption concentration and contact time had little effect on the adsorption percent, which was omitted. Then, using Box-Beckman method, the effect of three effective factors of pH, adsorbent dose (minimum possible value) and temperature were investigated. Their optimal values were 2, 0.02 g and 85 °C, respectively, which by considering these optimal values, absorption percent of the drug by the adsorbent is equal to 95.33%.

[1] G. Moussavi, A. Alahabadi, K. Yaghmaeian, M. Eskandari, “Preparation, characterization and adsorption potential of the NH4Cl-induced activated carbon for the removal of amoxicillin antibiotic from water,” Chemical engineering journal, 217, 119-128, 2008.
[2] R. Shokoohi, M. Leili, A. Dargahi, Y. Vaziri, R. Khamutian, “Common Antibiotics in Wastewater of Sina and Besat Hospitals, Hamadan, Iran,” Arch. Hyg. Sci., 6(2), 152-159, 2017.
[3] K. Rahmani, A. Rahmani, H. Rahmani, M. Zare, “Tetracycline Removal from Aqueous Solution by Nano Zero Valent Iron/UV/H2O2 Process,” Journal of Environmental Health Enginering, 2(4), 294-304, 2015.
[4] A. Hamzehzadeh, M. Fazlzadeh, K. Rahmani, “Efficiency of Nano/Persulfate Process (nZVI/PS) in Removing Metronidazole from Aqueous Solution,” Journal of Environmental Health Enginering, 4(4), 307-320, 2017.
[5] P. Liu, H. Zhang, Y. Feng, F. Yang, J. Zhang, “Removal of trace antibiotics from wastewater: A systematic study of Nano filtration combined with ozone-based advanced oxidation processes,” Chemical Engineering Journal, 240, 211-220, 2014.
[6] L. Rizzo, C. Manaia, C. Merlin, T. Schwartz, C. Dagot, M. Ploy, “Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review,” Science of the total environment, 447, 345-60, 2013.
[7] Y. Luo, W. Guo, H. H. Ngo, L. D. Nghiem, F. I. Hai, J. Zhang, “A review on the occurrence of micro pollutants in the aquatic environment and their fate and removal during wastewater treatment,” Science of The Total Environment, 473, 619-41, 2014.
[8] B. Kasprzyk-Hordern, R. M. Dinsdale, A. J. Guwy, “The removal of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs during wastewater treatment and its impact on the quality of receiving Waters,” Water research, 43(2), 363-80, 2009.
[9] H. Wang, G. Zhang, Y. Gao, Y. “Photocatalytic Degradation of Metronidazole in Aqueous Solution
120 زمستان ۱۳۹۹ | شماره 4 | سال هفتم
by Niobate K6Nb10.8O30,” Journal of Natural Sciences, 15(4), 345-349, 2010.
[10] C. Amsaleg, A. M. Laverman, “Do antibiotics have environmental side-effects Impact of synthetic antibiotics on biogeochemical processes,” Environmental Science and Pollution Research, 23(5), 4000-4012, 2016.
[11] W.H. Xu, G. Zhang, S.C. Zou, X.D. Li, Y.C. Liu, “Determination of selected antibiotics in the Victoria Harbour and the Pearl River, South China using high-performance liquid chromatography-electrospray ionization tandem mass spectrometry,” Environmental Pollution, 145(3), 672-679, 2007.
[12] A.R. Sayadi Anari, M. Asadpour, Z. Shabani, M. H. Sayadi Anari, “Pharmaceutical Pollution of the eco-system and Its Detrimental Effects on Public Health,” Journal of Rafsanjan University of Medical Sciences, 11(3), 11-18, 2013.
[13] Z. Fang, J. Chen, X. Qiu, W. Cheng, L. Zhu, “Effective removal of antibiotic metronidazole from water by nanoscale zerovalent iron particles,” Journal of Desalination, 268(13), 60-67, 2011.
[14] M. Yegane Badi, A. Azari, H. Pasalari, A. Esrafili, M. Farzadki, “Modification of activated carbon with magnetic Fe3O4 nanoparticle composite for removal of ceftriaxone from aquatic solutions,” Journal of Molecular Liquids و 261, 146–154, 2018.
[15] A.H. Oliver, N. Voulvoulis, N.L. John, “Potential impact of pharmaceuticals on environmental health,” Bulletin of the World Health Organization, 81(10), 768-9, 2003.
[16] A. Yazdanbakhsh, A. Sheykhmohammadi, M. sardar, M. Manshori, “Investigation of combined coagulation and advanced oxidation process efficiency for the removal of Clarithromycin from wastewater,” Journal of Yafteh, 13(1), 7-16, 2011. (Persian).
]17] X. Jianming, “Comparison of metronidazole degradation by different advanced oxidation processes in low concentration aqueous solutions,” Chinese Journal of Environmental Engineering, 3, 109-119, 2009.
[18] H. Dashti Khavidaki, M. H. Fekri, “Removing Thallium (I) Ion from Aqueous Solutions Using Modified ZnO Nanopowder,” Journal of Advances in Chemistry, 11(7), 3777-3788, 2015.
[19] M. Razavi Mehr, M. H. Fekri, F. Omidali, N. Eftekhari, B. Akbari-adergani, “Removal of Chromium (VI) from Wastewater by Palm Kernel Shell-based a Green Method,” Journal of Chemical Health Risks, 9(1), 75-86, 2019.
[20] M.H. Fekri, M. Banimahd Keivani, M. Razavi Mehr, B. Akbari-adergani, “Effective Parameters on Removal of Rhodamine B from Colored Wastewater by Nano polyaniline/Sawdust Composite,” Journal of Mazandaran University of Medical Sciences, 29 (177), 166-179, 2019.
[21] S. Shen, J. Ren, J. Chen, X. Lu, C. Deng, X. Jiang, “Development of magnetic multiwalled carbon nanotubes combined with near-infrared radiation assisted desorption for the determination of tissue distribution of doxorubicin liposome injects in rats,” Journal of Chromatography A, 1218(29), 4619-26, 2011.
[22] M. Iram, C. Guo, Y. Guan, A. Ishfaq, H. Liu, “Adsorption and magnetic removal of neutral red dye from aqueous solution using Fe3O4 hollow
121 زمستان ۱۳۹۹ | شماره 4 | سال هفتم
nanospheres,” Journal of Hazardous Materials, 181(1), 1039-50, 2010.
[23] S. Qu, F. Huang, S. Yu, G. Chen, J. Kong, “Magnetic removal of dyes from aqueous solution using multiwalled carbon nanotubes filled with Fe2O3 particles,” Journal of Hazardous Materials, 160(2), 643-47, 2008.
[24] D.T. Burchell, “Carbon materials for advanced technologies” Elsevier Science Ltd, 1999.
[25] L. Ai, H. Huang, Z. Chen, X, Wei, J. Jiang, “Activated carbon/CoFe2O4 composites: facile synthesis, magnetic performance and their potential application for the removal of malachite green from water,” Chemical Engineering Journal, 156, 243-249, 2010.