سنتز نانوچندسازه مغناطیسی ZnO/BentoniteAg/Fe3O4/ به روش سبز با کاربرد فوتوکاتالیستی

نویسندگان

دانشکده شیمی، دانشگاه پیام نور، تهران

چکیده

فوتوکاتالیزور Ag/ZnO مغناطیسی بر پایه بنتونیت  (ZnO/BentoniteAg/Fe3O4/) به روش سبز سنتز و با فن‌های متفاوت XRD، IRFT-، -EDAXSEM و VSM شناسایی شد. برای سنتز این نانوچندسازه، نخست نانوذرات Zno در بستر بنتونیت به روش سبز در حضور عصاره مرزن‌جوش سنتز شد و سپس نانوذرات Fe3O4 و Ag در بستر ZnO/Bentonite، تهیه شدند. نانوچندسازه تهیه شده ویژگی فوتوکاتالیستی بالایی در تجزیه رنگ‌های متیلن بلو (MB) و اریوکروم بلک تی (EBT) در حضور نور خورشید از خود نشان داد و سینتیک تجزیه رنگ‌های MB و EBT از مدل لانگمور- هینشلوود تبعیت کرد. از طرف دیگر تجزیه رنگ‌ها و کاهش وزن نانوچندسازه بعد از پنج بار آزمایش خیلی پایین بود و این نشان دهنده این است که نانوچندسازه مغناطیسی سنتز شده دارای پایداری بالا بوده و به‌راحتی بازیابی می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Synthesis of Ag/Fe3O4/ZnO/Bentonite magnetic nanocomposite by green method with photocatalytic application

نویسندگان [English]

  • BAHAEDIN Rashidzadeh
  • sogra Fathalipour
  • gazal razmian
چکیده [English]

 Ag/ZnO magnetic photocatalyst based on Bentonite (Ag/Fe3O4/ZnO/Bentonite) was synthesized by green method and investigated by various techniques: XRD, FT-IR, -EDAXSEM and VSM. To synthesize this nanocomposite, first Zno nanoparticles were synthesized on bentonite substrate by green method in the presence of vulgare extract and then Fe3O4 and Ag nanoparticles were prepared on ZnO/Bentonite. The prepared nanocomposite showed high photocatalytic properties for the decomposition of methylene blue (MB) and Eriochrome Black T (EBT) in the presence of sunlight, and the decomposition kinetics of MB and EBT followed the Langmuir-Hinslowwood model. On the other hand, the decomposition of colors and weight loss of the nanocomposite was very low after five tests, indicating that the synthesized magnetic nanocomposite has a high stability and is easily recoverable.

[1] J.B. Modak, A. Bhowal, S. Datta, “Extraction of dye from aqueous solution in rotating packed bed,” Journal of hazardous materials, 304, 337-342, 2016.
[2] S. Mehrali, M.S. Alavi, S. Hashemi, “Removal of reactive blue 19 by adding polyaluminum chloride to sequencing batch reactor system,” Journal of Environmental Health Science and Engineering, 7, 63-70, 2010.
[3] P. Raizada, A. Sudhaik, P. Singh,“Photocatalytic water decontamination using graphene and ZnO coupled photocatalysts: A review,” Materials Science for Energy Technologies, 2, 509-525, 2019.
[4] P. Raizada, B. Priya, P. Thakur, P. Singh, “Solar light induced photodegradation of oxytetracyline using Zr doped TiO2/CaO based nanocomposite,” Indian Journal of Chemistry, 55 A, 803-809, 2016.
[5] P. Raizada, J. Kumari, P. Shandilya, R. Dhiman, V.P. Singh, P. Singh,“Magnetically
108 زمستان ۱۳۹۹ | شماره 4 | سال هفتم
retrievable Bi2WO6/Fe3O4 immobilized on graphene sand composite for investigation of photocatalytic mineralization of oxytetracycline and ampicillin,” Process Safety and Environmental Protection, 106,104-116, 2017.
[6] M. Iqbal, A. Ali, N.A. Nahyoon, A. A. Majeed, R. Pothu, S. Phulpoto, K.H. Thebo,“Photocatalytic degradation of organic pollutant with nanosized cadmium sulfide,” Materials Science for Energy Technologies, 2, 41-45, 2019.
[7] J. Mani, H. Sakeek, S. Habouti, M. Dietze, M. Es-Souni, “Macro–meso-porous TiO2, ZnO and ZnO–TiO2-composite thick films. Properties and application to photocatalysis,” Catalysis Science & Technology, 2, 379-385, 2012.
[8] M. Pirhashemi, A. Habibi-Yangjeh, S.R. Pouran, “Review on the criteria anticipated for the fabrication of highly efficient ZnO-based visible-light-driven photocatalysts,” Journal of industrial and engineering chemistry, 62,1-25, 2018.
[9] M. Samadi, M. Zirak, A. Naseri, M. Kheirabadi, M. Ebrahimi, A.Z. Moshfegh, “Design and tailoring of one-dimensional ZnO nanomaterials for photocatalytic degradation of organic dyes: a review,” Research on Chemical Intermediates, 45, 2197-2254, 2019.
[10] R. Kavitha, S.G. Kumar, “A review on plasmonic Au-ZnO heterojunction photocatalysts: Preparation, modifications and related charge carrier dynamics,” Materials Science in Semiconductor Processing, 93, 59-91, 2019.
[11] H. Wang, P. Zhou, R. Guo, Y. Wang, H. Zhan, Y. Yuan, “ Synthesis of rectorite/Fe3O4/ZnO composites and their application for the removal of methylene blue dye,” Catalysts, 8, 107, 2018.
[12] S. Senapati, A. Syed, S. Moeez, A. Kumar, A. Ahmad, “Intracellular synthesis of gold nanoparticles using alga Tetraselmis kochinensis,” Materials Letters, 79, 116-118, 2012.
[13] A.K. Mittal, Y. Chisti, U.C. Banerjee, “Synthesis of metallic nanoparticles using plant extracts. Biotechnology advances,” 31, 346-356, 2013.
[14] X.L. Zhang, Y.S. Guo, C.H. Wang, G.Q. Li, J.J. Xu, H.Y. Chung, W.C. Ye, Y.L. Li, G.C. Wang, “Phenolic compounds from Origanum vulgare and their antioxidant and antiviral. activities,” Food Chem, 152, 300-306, 2014.
[15] M. Hayati-Ashtiani, “Use of FTIR spectroscopy in the characterization of natural and treated nanostructured bentonites (montmorillonites),”Particulate Science and Technology, 30, 553-564, 2012.
[16] H.J. Al-Tameme, I.H. Hameed, S.A. Idan, M.Y. Hadi, “Biochemical analysis of Origanum vulgare seeds by fourier-transform infrared (FT-IR) spectroscopy and gas chromatography-mass spectrometry (GC-MS),” Journal of Pharmacognosy and Phytotherapy, 7, 221-237, 2015.
[17] G. Xiong, U. Pal, J. Serrano, K. Ucer, R. Williams, “Photoluminesence and FTIR study of ZnO nanoparticles: the impurity and defect perspective,” physica status solidi c, 3, 3577-3581, 2006.
[18] S.C. Motshekga, S.S. Ray, M.S. Onyango, M.N. Momba, “Microwave-assisted synthesis, characterization and antibacterial activity of Ag/ZnO nanoparticles supported bentonite clay,” Journal of hazardous materials, 262,439-446, 2013.
109 زمستان ۱۳۹۹ | شماره 4 | سال هفتم
[19] Y. Xu, M.A. Schoonen, “The absolute energy positions of conduction and valence bands of selected semiconducting minerals,” American Mineralogist, 85, 543-556, 2000.