بررسی عملکرد حس‌گر گاز اتانول بر پایه نانولوله‌های اکسیدروی سنتز شده به روش الکتروشیمیایی

نویسندگان

شیمی تجزیه، دانشکده شیمی، دانشگاه علم و صنعت ایران، تهران، تهران

چکیده

برای نظارت بر کیفیت هوا و کاربردهای پزشکی، نانوذرات نیمه‌هادی اکسید- فلز گزینه‌ای مطلوب و حساس برای تشخیص مقدارهای کم گازها هستند. در این مقاله، ما چهار ویژگی تجزیه‌ای: حد تشخیص، دامنه قابل اندازه‌گیری، دقت (تکرارپذیری) و سرعت پاسخ، حس‌گر گاز اتانول ساخته شده با نانولوله‌ی ZnO را موردبررسی قرار داده‌ایم. نانولوله‌ی ZnO با یک روش سریع الکتروشیمیایی و در مدت 40 دقیقه سنتز و برای ساخت حس‌گر استفاده شد. پاسخ حس‌گر گاز براساس نسبت تغییرات مقاومت الکتریکی حس‌گر در حضور نمونه‌های گازی به مقاومت الکتریکی آن در هوا مورد بررسی قرار گرفت. مطالعه‌های ویژگی‌های تجزیه‌ای حس‌گر با حد تشخیص ppm 5/6 و ضریب همبستگی بالای 9998/0 برای منحنی کالیبراسیون، انحراف استاندارد نسبی 52/0 و سرعت احیای بسیار سریع 20 ثانیه‌ای، نشان از حساسیت، تکرارپذیری و سرعت پاسخ مناسب حس‌گر ساخته شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Performance evaluation of the ethanol gas sensor based on electrochemically synthesized zinc oxide nanotubes

نویسندگان [English]

  • mohsen salimi
  • S.mohamadreza milani Hosseini
چکیده [English]

To monitor air quality and medical use, metal-oxide semiconductor are highly-sensitive and a good option for detecting small amounts of gases. In this paper, we study the analytical characteristics of the ethanol gas sensor made of ZnO nanotubes. For this purpose, ZnO nanotube were synthesized using a rapid electrochemical method in 40 minutes and used to make a sensor. The response of the gas sensor which based on the ratio of the electrical resistance of the sensor in the presence of gas samples to its electrical resistance in the air, was investigated. The sensor's analytical characteristics with a detection limit of 6.5 ppm and a good correlation coefficient of 0.9998 for the calibration curve, a relative standard deviation of 0.52 and a high recovery speed of 20 seconds, indicating that the sensor is sensitive, repeatable and have fast response.

[1] Z.H. Ma, R.T. Yu, J.M.J.S. Song, and A.B. Chemical, Facile synthesis of Pr-doped In2O3 nanoparticles and their high gas sensing performance for ethanol. 305, 127377-127380, 2020.
[2] H.L. Yu, J. Wang, B. Zheng, B.W. Zhang, L.Q. Liu, Y.-W. Zhou, C. Zhang, and X.-L. Xue, Fabrication of single crystalline WO3 nano-belts based photoelectric gas sensor for detection of high concentration ethanol gas at room temperature. Sensors and Actuators A: Physical. 303,111865-111870, 2020.
[3] W. Haron, A. Wisitsoraat, and S.J.C.I. Wongnawa, Nanostructured perovskite oxides–LaMO3 (M= Al, Co, Fe) prepared by co-precipitation method and their ethanol-sensing characteristics. 43, 5032-5040, 2017.
[4] X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, and H.J.S. Ning, A survey on gas sensing technology. 12, 9635-9665, 2012.
[5] B.J. Wang and S.Y. Ma, High response ethanol gas sensor based on orthorhombic and tetragonal SnO2. Vacuum. 177, 109428, 2020.
[6] K. Suematsu, K. Watanabe, A. Tou, Y. Sun, and K.J.A.c. Shimanoe, Ultraselective toluene-gas sensor: Nanosized gold loaded on zinc oxide nanoparticles. 90, 1959-1966, 2018.
[7] J. Wang, R. Chen, L. Xiang, and S.J.C.I. Komarneni, Synthesis, properties and applications of ZnO nanomaterials with oxygen vacancies: A review. 44, 7357-7377, 2018.
[8] W. Geng, S. Ge, X. He, S. Zhang, J. Gu, X. Lai, H. Wang, Q.J.A.a.m. Zhang, and interfaces, Volatile organic compound gas-sensing properties of bimodal porous α-Fe2O3 with ultrahigh sensitivity and fast response. 10, 13702-13711, 2018.
[9] S. Wicker, M. Guiltat, U. Weimar, A. Hémeryck, and N.J.T.J.o.P.C.C. Barsan, Ambient humidity influence on CO detection with SnO2 gas sensing materials. A combined DRIFTS/DFT Investigation. 121, 25064-25073, 2017.
[10] N. Kaur, D. Zappa, M. Ferroni, N. Poli, M. Campanini, R. Negrea, E.J.S. Comini, and A.B. Chemical, Branch-like NiO/ZnO heterostructures for VOC sensing. 262, 477-485, 2018.
[11] M. Ha, S. Lim, J. Park, D.S. Um, Y. Lee, and H.J.A.F.M. Ko, Bioinspired interlocked and hierarchical design of ZnO nanowire arrays for static and dynamic pressure‐sensitive electronic skins. 25, 2841-2849, 2015.
67 زمستان ۱۳۹۹ | شماره 4 | سال هفتم
[12] C. Wang, R. Bao, K. Zhao, T. Zhang, L. Dong, and C.J.N.E. Pan, Enhanced emission intensity of vertical aligned flexible ZnO nanowire/p-polymer hybridized LED array by piezo-phototronic effect. 14, 364-371, 2015.
[13] L. Wang, S. Liu, Z. Wang, Y. Zhou, Y. Qin, and Z.L.J.A.n. Wang, Piezotronic effect enhanced photocatalysis in strained anisotropic ZnO/TiO2 nanoplatelets via thermal stress. 10, 2636-2643, 2016.
[14] S. Park, High-response and selective hydrogen sensing properties of porous ZnO nanotubes. Current Applied Physics. 16,1263-1269, 2016.
[15] T. Zhou, Y. Sang, X. Wang, C. Wu, D. Zeng, C.J.S. Xie, and A.B. Chemical, Pore size dependent gas-sensing selectivity based on ZnO@ ZIF nanorod arrays. 258, 1099-1106, 2018.
[16] N. Saito, K. Watanabe, H. Haneda, I. Sakaguchi, and K. Shimanoe, Highly Sensitive Ethanol Gas Sensor Using Pyramid-Shaped ZnO Particles with (0001) Basal Plane. The Journal of Physical Chemistry C. 122(13): p. 7353-7360, 2018.
[17] C. Wang, L. Yin, L. Zhang, D. Xiang, and R.J.S. Gao, Metal oxide gas sensors: sensitivity and influencing factors. 10, 2088-2106, 2010.
[18] Z. Jin, P. Li, G. Liu, B. Zheng, H. Yuan, and D.J.J.o.M.C.A. Xiao, Enhancing catalytic formaldehyde oxidation on CuO–Ag2O nanowires for gas sensing and hydrogen evolution. 1, 14736-14743, 2013.
[19] W. Cheng, Y. Ju, P. Payamyar, D. Primc, J. Rao, C. Willa, D. Koziej, and M.J.A.C.I.E. Niederberger, Large‐area alignment of tungsten oxide nanowires over flat and patterned substrates for room‐temperature gas sensing. 54, 340-344, 2015.
[20] G. Katwal, M. Paulose, I.A. Rusakova, J.E. Martinez, and O.K. Varghese, Rapid growth of zinc oxide nanotube–nanowire hybrid architectures and their use in breast cancer-related volatile organics detection. Nano letters. 16(5): p. 3014-3021, 2016.
[21] ح. سالار آملی و م.ر. محرم زاده, ساخت حس گر رطوبت بر پایه
نانوذرات اکسید قلع و گرافیت به روش اسپری پیرولیز. فصل نامه
نانومقیاس. دوره 4 ، صفحه 311 - 319 ، 1396 .
[22] T.-J. Hsueh, S.-J. Chang, C.-L. Hsu, Y.-R. Lin, and I.-C. Chen, ZnO nanotube ethanol gas sensors. Journal of The Electrochemical Society. 155, K152, 2008.
[23] O. Lupan, V.V. Ursaki, G. Chai, L. Chow, G.A. Emelchenko, I.M. Tiginyanu, A.N. Gruzintsev, and A.N. Redkin, Selective hydrogen gas nanosensor using individual ZnO nanowire with fast response at room temperature. Sensors and Actuators B: Chemical. 144, 56-66, 2010.
[24] J.J. Hassan, M.A. Mahdi, C.W. Chin, H. Abu-Hassan, and Z. Hassan, A high-sensitivity room-temperature hydrogen gas sensor based on oblique and vertical ZnO nanorod arrays. Sensors and Actuators B: Chemical. 176, 360-367, 2013.
[25] A. Yoko, T. Aida, N. Aoki, D. Hojo, M. Koshimizu, S. Ohara, G. Seong, S. Takami, T. Togashi, and T. Tomai, Supercritical hydrothermal synthesis of nanoparticles, in Nanoparticle technology handbook. 2018, Elsevier. p. 683-689.
[26] B.M. Rao, A. Torabi, and O.K. Varghese, Anodically grown functional oxide nanotubes and
68 زمستان ۱۳۹۹ | شماره 4 | سال هفتم
applications. MRS Communications. 6, 375-396, 2016.
[27] H. Dong, J. Zhou, and S. Virtanen, Fabrication of ZnO nanotube layer on Zn and evaluation of corrosion behavior and bioactivity in view of biodegradable applications. Applied Surface Science. 494, 259-265, 2019.
[28] T.C. Pearce, S.S. Schiffman, H.T. Nagle, and J.W. Gardner, Handbook of machine olfaction: electronic nose technology. John Wiley & Sons, 2006.
[29] S. Jain, N. Karmakar, A. Shah, D.C. Kothari, S. Mishra, and N.G. Shimpi, Ammonia detection of 1-D ZnO/polypyrrole nanocomposite: Effect of CSA doping and their structural, chemical, thermal and gas sensing behavior. Applied Surface Science. 396, 1317-1325, 2017.
[30] شهروز نصیریان, شقایق تیموری، سننزز و مطالعنه خصوصن یت
حس گری گاز اتانول بر پایه ی نانوکامپوزیت اکسیدروی اکسن ید نیکنل
در دمای اتاق. اولین کنفرانس ملی میکرو نانو فناوری, 139۷ .
[31] M.A. Olgar, Y. Atasoy, E. Bacaksız, and Ş. Aydoğan, Synthesis and characterization of ZnO micro-rods and temperature-dependent characterizations of heterojunction of ZnO microrods/CdTe and ZnO microrods/ZnTe structures. Sensors and Actuators A: Physical. 261, 56-65, 2017.