مطالعه ویژگی‌های ساختاری، نوری و حس‌گری گازی نانوذرات اکسیدقلع آلاییده با آهن، سنتز شده به روش مایکروویو

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده فیزیک، دانشگاه دامغان، دامغان، سمنان، ایران

چکیده

در این پژوهش نانوذرات نیم‌رسانای اکسیدقلع آلاییده با آهن با نسبت مولی آهن به قلع 0، 1، 2 و 3 درصد به روش مایکروویو سنتز شدند. ساختار بلوری، ریخت‌شناسی سطح، پیوندهای شیمیایی و ویژگی‌های نوری نمونه‌ها به‌وسیله پراش‌سنج پرتوایکس (XRD)، میکروسکوپ الکترونی روبشی اثر میدان (FESEM)، طیف‌سنج تبدیل فوریه فروسرخ (FTIR) و طیف‌سنجی (UV-vis) مطالعه شده است. آنالیز عنصرها به‌وسیله طیف‌سنجی پراکندگی انرژی پرتوایکس (EDAX) انجام شد. نتیجه‌های پراش پرتوایکس نشان داد که نمونه‌ها بس‌بلور بوده و دارای قله‌های ارجح مربوط به صفحات (110)، (101)، (200)، (211)، (220)، (002)، (310)، (112) و (301) فاز SnO
2
با ساختار چهارگوشه روتیل هستند. افزایش تراکم ناخالصی آهن از صفر به سه درصد، سبب کاهش اندازه متوسط نانوبلورک‌ها از 53
/
23 به nm 03
/
11، کاهش اندازه دانه‌ها از 37 به nm 28 و افزایش حجم سلول واحد از 61
/
70 به  40
/
71 و گاف نوری از 13
/
3 به eV 2
/
4 می‌شود. نتیجه‌های آنالیز FTIR پیوند SnO
2
را در نمونه‌ها تأیید می‌کند. بررسی ویژگی‌های حس‌گری گاز اتانول به‌وسیله نمونه‌ها نشان داد که زمان پاسخ حس‌گرها در گستره 75
/
15 تا s 85
/
38 هست. حس‌گر ساخته‌شده با نانوذرات با تراکم یک درصد آهن شرایط بهینه حس‌گری را از خود نشان داد.

کلیدواژه‌ها


عنوان مقاله [English]

Study of structural, optical and gas sensor properties, tin oxide nanoparticles doped with iron synthesized by microwave method

نویسندگان [English]

  • soosan mansoori
  • mohammadreza fadavieslam
چکیده [English]

In this study, iron-doped tin oxide semiconductor nanoparticles with an iron to tin mole ratio of 0, 1, 2 and 3% synthesized by microwave method. The crystal structure, surface morphology, chemical bonds, and optical properties of the samples were studied by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), infrared fourier transform spectroscopy (FTIR), and UV–Vis spectroscopy. Elements analysis was performed by EDAX. The X-ray diffraction results showed that the samples were polycrystalline, and have the preferred peaks of plates (110), (101), (200), (211), (220), (002), (310), (112), and (301) SnO2 phase with rutile rectangular structure. Increasing the iron impurity density from zero to three percent causes the reducing average size of nanocrystals from 23.53 to 11.03 nm, reducing grain size from 37 to 28 nm, and increasing unit cell volume from 70.61 to 71.40  and the optical band gap from 3.3 to 4.2 eV. The results of FTIR analysis confirm the SnO2 bond in the samples. Investigation of the sensing properties of ethanol gas by the samples showed that the response time of the sensors is in the range of 15.75 to 38.85 s. The sensor made with nanoparticles with a concentration of 1% iron exhibited optimum sensing conditions.
 

[1] W. Tan, X. Ruan, Q. Yu, Z. Yu, X. Huang, “Fabrication of a SnO2-Based Acetone Gas Sensor Enhanced by Molecular Imprinting,” Sensors, 15, 352-364, 2014.
[2] S. Liang, J. Li, F. Wang, J. Qin, X. Lai, X. Jiang, “Highly sensitive acetone gas sensor based on ultrafine α-Fe2O3 nanoparticles,” Sensors and Actuators B: Chemical, 238, 923-927, 2017.
[3] R. Abdelghani, H. Shokry Hassan, I. Morsi, A.B. Kashyout, “Nano-architecture of highly sensitive SnO2–based gas sensors for acetone and ammonia using molecular imprinting technique,” Sensors and Actuators B: Chemical, 297, 126668, 2019.
[4] X. Kou, N. Xie, F. Chen, T. Wang, L. Guo, C. Wang, Q. Wang, J. Ma, Y. Sun, H. Zhang, G. Lu, “Superior acetone gas sensor based on electrospun SnO2 nanofibers by Rh doping,” Sensors and Actuators B: Chemical, 256, 861-869, 2018.
[ 5 [ ح. سالار آملی، م. محرم زاده، "ساخت حس گر رطوبت بر
پایه نانوذرات اکسیدقلع و گرافیت به روش اسپری پیرولیز،"
نانومقیاس، 4 ، 320 - 311 ، 1396 .
[6] H. Wang, Y. Qu, Y. Li, H. Chen, Z. Lin, “Effect of Ce+3 and Pd+2 Doping on Coral-Like Nanostructured SnO2 as Acetone Gas Sensor,” Journal of Nanoscience and Nanotechnology, 13, 1858-1862, 2013.
[7] L.K. Bagal, J.Y. Patil, K.N. Bagal, I.S. Mulla, S.S. Suryavanshi, “Acetone vapour sensing characteristics of undoped and Zn, Ce doped SnO2 thick film gas sensor,” Materials Research Innovations, 17, 98-105, 2013.
[8] F. Rabiei, M.E. Ghazi, M. Eizadi Fard, “Investigation of sensing properties of cobalt doped nickel-ferrite nanostructures synthesized by microwave method,” Iranian Journal of Crystallography and Mineralogy, 23 (2016) 689-698
[9] Y. Li, N. Chen, D. Deng, X. Xing, X. Xiao, Y. Wang, “Formaldehyde detection: SnO2 microspheres for formaldehyde gas sensor with high sensitivity, fast response/recovery and good selectivity,” Sensors and Actuators B: Chemical, 238, 264-273, 2017.
[ 10 [ ن. جمال پور، م. قاسمی، و. سلیمانیان، "مقایسه خواص
اپتوالکترونیکی لایه های نانوساختار In2O3 ، SnO2 و ITO جهت
حس گری اتانول،" نانومقیاس، 4 ، 330 - 321 ، 1396 .
[11] P. Salimi kuchi, H. Roshan, M.H. Sheikhi, “A novel room temperature ethanol sensor based on PbS:SnS2 nanocomposite with enhanced ethanol sensing properties,” Journal of Alloys and Compounds, 816, 152666, 2020.
[12] M. Asgari, F.H. Saboor, Y. Mortazavi, A.A. Khodadadi, “SnO2 decorated SiO2 chemical sensors: Enhanced sensing performance toward ethanol and acetone,” Materials Science in Semiconductor Processing, 68, 87-96, 2017.
40 زمستان ۱۳۹۹ | شماره 4 | سال هفتم
[13] M. Kumar, V. Bhatt, A.C. Abhyankar, J. Kim, A. Kumar, S.H. Patil, J.-H. Yun, “New insights towards strikingly improved room temperature ethanol sensing properties of p-type Ce-doped SnO2 sensors,” Scientific Reports, 8, 8089, 2018.
[14] N. Lavanya, C. Sekar, S. Ficarra, E. Tellone, A. Bonavita, S.G. Leonardi, G. Neri, “A novel disposable electrochemical sensor for determination of carbamazepine based on Fe doped SnO2 nanoparticles modified screen-printed carbon electrode,” Materials Science and Engineering: C, 62, 53-60, 2016.
[15] W. Ben Haj Othmen, B. Sieber, H. Elhouichet, A. Addad, B. Gelloz, M. Moreau, S. Szunerits, R. Boukherroub, “Effect of high Fe doping on Raman modes and optical properties of hydrothermally prepared SnO2 nanoparticles,” Materials Science in Semiconductor Processing, 77, 31-39, 2018.
[16] S. Ferrari, L.G. Pampillo, F.D. Saccone, “Magnetic properties and environment sites in Fe doped SnO 2 nanoparticles,” Materials Chemistry and Physics, 177, 206-212, 2016.
[17] W. Ben Haj Othmen, N. Sdiri, H. Elhouichet, M. Férid, “Study of charge transport in Fe-doped SnO2 nanoparticles prepared by hydrothermal method,” Materials Science in Semiconductor Processing, 52, 46-54, 2016.
[18] F.H. Aragón, J.A.H. Coaquira, I. Gonzalez, L.C.C.M. Nagamine, W.A.A. Macedo, P.C. Morais, “Fe doping effect on the structural, magnetic and surface properties of SnO2 nanoparticles prepared by a polymer precursor method,” Journal of Physics D: Applied Physics, 49, 55002, 2016.
[19] S. Sambasivam, B.C. Choi, J.G. Lin, “Intrinsic magnetism in Fe doped SnO2 nanoparticles,” Journal of Solid State Chemistry, 184, 199-203, 2011.
[20] A. Arabkhorasani, E. Saievar-Iranizad, A. Bayat, “Investigation of Thickness Effect of Films on Performance of Dye Sensitized Solar Cell Based on ZnO and SnO2 Nanoparticles,” Nanomeghyas, 2, 133-169, 2015.
[21] T. Amutha, M. Rameshbabu, S. Sasi Florence, N. Senthilkumar, I. Vetha Potheher, K. Prabha, “Studies on structural and optical properties of pure and transition metals (Ni, Fe and co-doped Ni–Fe) doped tin oxide (SnO2) nanoparticles for anti-microbial activity,” Research on Chemical Intermediates, 45, 1929-1941, 2019.
[22] M. Sharma, S. Kumar, R.N. Aljawfi, S. Dalela, S.N. Dolia, A. Alshoaibi, P.A. Alvi, “Role of Fe-Doping on Structural, Optical and Magnetic Properties of SnO2 Nanoparticles,” Journal of Electronic Materials, 48, 8181-8192, 2019.
[23] M.A. Tagliente, M. Massaro, “Strain-driven (002) preferred orientation of ZnO nanoparticles in ion-implanted silica,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 266, 1055-1061, 2008.
[24] S. Nilavazhagan, S. Muthukumaran, “Investigation of optical and structural properties of Fe, Cu co-doped SnO2 nanoparticles,” Superlattices and Microstructures, 83, 507-520, 2015.
[25] T. Krishnakumar, R. Jayaprakash, M. Parthibavarman, A.R. Phani, V.N. Singh, B.R. Mehta, “Microwave-assisted synthesis and investigation of SnO2 nanoparticles,” Materials Letters, 63, 896-898, 2009.
41 زمستان ۱۳۹۹ | شماره 4 | سال هفتم
[26] J. Kaur, J. Shah, R.K. Kotnala, K.C. Verma, Raman spectra, “photoluminescence and ferromagnetism of pure, Co and Fe doped SnO2 nanoparticles,” Ceramics International, 38, 5563-5570, 2012.
[27] A.R. Babar, S.S. Shinde, A.V. Moholkar, K.Y .
Rajpure, “Electrical and dielectric properties of co-precipitated nanocrystalline tin oxide,” Journal of Alloys and Compounds, 505, 743-749, 2010.
[28] M. Jafari, H. Eshghi, “An Investigation on the Physical Properties and Photoconductivity Effect of CuO Nanostructures Prepared by Thermal Oxidation Route,” Nanomeghyas, 6, 11-18, 2019.
[28] E. Ghaleghafi, M. Rahmani, “Fabrication, characterization and investigation of gas sensing properties of MoO3 thin films,” Iranian Journal of Crystallography and Mineralogy, 27, 475-486, 2019.
[29] S. Habibzadeh, A.A. Khodadadi, Y. Mortazavi, “CO and ethanol dual selective sensor of Sm2O3-doped SnO2 nanoparticles synthesized by microwave-induced combustion,” Sensors and Actuators B: Chemical, 144, 131-138, 2010.
[30] W. Zhang, B. Yang, J. Liu, X. Chen, X. Wang, C. Yang, “Highly sensitive and low operating temperature SnO2 gas sensor doped by Cu and Zn two elements,” Sensors and Actuators B: Chemical, 243, 829-989, 2017.
[31] W.X. Jin, S.Y. Ma, Z.Z. Tie, J.J. Wei, J. Luo, X.H. Jiang, T.T. Wang, W.Q. Li, L. Cheng, Y.Z. Mao, “One-step synthesis and highly gas-sensing properties of hierarchical Cu-doped SnO2 nanoflowers,” Sensors and Actuators B: Chemical, 213, 171-180, 2015.
[32] Q. Zhou, W. Chen, L. Xu, R. Kumar, Y. Gui, Z. Zhao, C. Tang, S. Zhu, “Highly sensitive carbon monoxide (CO) gas sensors based on Ni and Zn doped SnO2 nanomaterials,” Ceramics International, 44, 4392-4399, 2018.