فهرست

تولید نانوسلولز باکتریایی و بررسی انرژی سطح به روش کروماتوگرافی گازی معکوس

نشریه: سال چهارم-شماره ۱-بهار ۱۳۹۶ - مقاله 1   صفحات :  1 تا 8



کد مقاله:
nm-241

مولفین:
فرانک محمدکاظمی: دانشگاه شهید بهشتی - دانشکده مهندسی انرژی و فناوریهای نوین


چکیده مقاله:

در این مطالعه نانوسلولز باکتریایی توسط سویه Gluconacetobacter xylinus PTCC 1734 در محیطهای کشت HS و Z و با منابع کربن مختلف گلوکز، شیره خرما، ساکارز، مانیتول و ساکارز خوراکی تولید و خصوصیات سطحی آنها با روش کرماتوگرافی گازی معکوس IGC ارزیابی شد. نتایج نشان داد که بطور میانگین وزن خشک سلولز در محیط کشت Z به مقدار 2/14 درصد بیشتر از HS بود. در حالیکه بازده تولید در محیط HS حدود 86/76 درصد بیشتر از Z بود. تصاویر FE-SEM ساختار شبکهای سه بعدی الیاف سلولز باکتریایی با میانگین قطر 60-20 نانومتر را تأیید کرد. طبق نتایج آنالیز IGC، در محیطهای کشت HS و Z بیشترین انرژی آزاد سطح با پروب اتانول به ترتیب با شیره خرما kJ/mol 46/7 و مانیتول kJ/mol 14/11 بدست آمد که نشاندهنده بیشتر بودن خاصیت بازی سطح می باشد. ثابتهای اسیدی و بازی بدستآمده نیز این یافتهها را تأیید کردند.


Article's English abstract:

In this study, bacterial nano cellulose was produced from Gluconacetobacter xylinus PTCC 1734 in different culture media HS and Z and carbon sources glucose, date syrup, sucrose, mannitol, food-grade sucrose, and the surface properties was evaluated using inverse gas chromatography IGC method. The results showed that on average, dry weight of cellulose in Z medium was 14.2 higher than HS, while production yield in HS medium was around 76.86 higher than that of Z medium. FE-SEM micrographs confirmed three dimensional network of bacterial cellulose fibers with the average diameter of 20-60 nm. According to the IGC results, the highest surface free energy with ethanol probe in the HS and Z media was obtained with date syrup 7.46 kJ/mol and mannitol 11.14 kJ/mol, respectively. This is indicative for the higher basic character of the surface. Moreover, acid-base constants endorsed these findings.


کلید واژگان:
نانوسلولز باکتریایی، محیط کشت، منبع کربن، سطح، IGC

English Keywords:
bacterial nano-cellulose; culture medium; carbon source; surface; IGC.

منابع:

English References:
[1] G. Franz, W. Blaschek, Cellulose, in Methods in Plant Biochemistry: Carbohydrates. 1990. [2] D. Klemm, D. Schumann, F. Kramer, N. Hessler, M. Hornung, H-P. Schmauder, S. Marsch, “Nanocelluloses as innovative polymers in research and application. Adv. Polym. Sci., vol. 205, pp. 49-96, 2006. [3] P. Chen, S. Cho, H.-J. Jin, “Modification and applications of bacterial celluloses in polymer science”, Macromol. Res., vol. 18, pp. 309-320, 2010. [4] S. Kirdponpattara, A. Khamkeaw, N. Sanchavanakit, P. Pavasant, M. Phisalaphong, “Structural modification and characterization of bacterial cellulose–alginate composite scaffolds for tissue engineering,” Carbohydr. Polym., vol. 132, pp. 146–155, 2015. [5] W. Shao, S. Wang, H. Liu, J. Wu, R. Zhang, H. Min, M. Huang, “Preparation of bacterial cellulose/graphene nanosheets compositefilms with enhanced mechanical performances, ” Carbohydr. Polym., vol. 138, pp. 166–171, 2016. [6] S. Bielecki, A. Krystinowicz, M.B.C. Turkiewcz, H. Kalinowska, “Bacterial cellulose in polysaccharides and polyamide in the food industry: Properties, production and patents”. 2005. [7] M.P. Elizalde-Gonz?lez, R. Ru?z-Palma, “Gas chromatographic characterization of the adsorption properties of the natural adsorbent CACMM2”, J. Chromatogr. A., vol. 845, pp. 373-379, 1999. [8] N. Cordeiro, A. Ashori, Y. Hamzeh, M. Faria, “Effects of hot water pre-extraction on surface properties of bagasse soda pulp”, Mater. Sci. Eng. C., vol. 33, pp. 613-617, 2013. [9] A. Boutboul, F. Lenfant, P. Giampaoli, A. Feigenbaum, V. Ducret, “Use of inverse gas chromatography to determine thermodynamic parameters of aroma–starch interactions”, J. Chromatogr. A., vol. 969, pp. 9-16, 2002. [10] K. Boukerma, J.Y. Piquemal, M.M. Chehimi, M. Mravcakova, M. Omastova, P. Beaunier, “Synthesis and interfacial properties of montmorillonite/polypyrrole nanocomposites”, Polym., vol. 47, pp. 569-576, 2005. [11] F. Mohammadkazemi, M. Faria, N. Cordeiro, “In situ biosynthesis of bacterial nanocellulose-CaCO3 hybrid composite: one-step process”, Mater. Sci. Eng. C., vol. 65 (1), pp. 393-399, 2016. [12] I.B. Neves, M. Chabut, C. Perruchot, M.M. Chehimi, K. Benzarti, “Interfacial interactions of structural adhesive components with cement pastes studies by inverse gas chromatography (IGC)”, Appl. Surf. Sci., vol. 238, pp. 523-529, 2004. [13] S-P. Lin, C-T. Liu, K-D. Hsu, Y-T. Hung, T-Y. Shih, K-C. Cheng, “Production of bacterial cellulose with various additives in a PCS rotating disk bioreactor and its material property analysis”, vol. 23, pp. 367-377, 2016. [14] R. Yudianti, A. Syampurwadi, H. Onggo, M. Karina, H. Uyama, J. Azuma, “Properties of bacterial cellulose transparent film regenerated from dimethylacetamide-LiCl solution, Polym. Adv. Technol., vol. 27, pp. 1102–1107, 2016. [15] F. Mohammadkazemi, K. Doosthoseini, E. Ganjian, M. Azin, “Manufacturing of bacterial nano-cellulose reinforced fiber-cement composites,” Constr. Build. Mater., vol. 101, pp. 958-964, 2015. [16] H.H. Chen, L-C. Chen, H-C. Huang, S-B. Lin, “In situ modification of bacterial cellulose nanostructure by adding CMC during the growth of Gluconacetobacter xylinus”, Cellulose, vol. 18(6), pp. 1573–1583, 2011. [17] M. Moosavi-Nasab, A. Yousefi, “Investigation of Physicochemical Properties of the Bacterial Cellulose Produced by Gluconacetobacter xylinus from Date Syrup”, World Academy of Science, Engineering and Technology, International Science Index 44, Int. J. Biol. Biomol. Agric. Food Biotechnol. Eng., vol. 4, pp. 613 – 618, 2010. [18] D.R. Ruka, G.P. Simon, K.M. Dean, “Altering the growth conditions of Gluconacetobacter xylinus to maximize the yield of bacterial cellulose”, Carbohydr. Polym., vol. 89, pp. 613-622, 2012. [19] S. Gea, “Innovative bio-nano composites based on bacterial cellulose” Ph.D. dissertation, Eng. Mater. Sci. Dept., Queen Mary Univ., London, 2010. [20]. R.P. Chawla, B. Bajaj Ishwar, A. Survase Shrikant, S. RekhaSinghal, Food Technol. Biotechnol., vol. 47, pp. 107-124, 2009. [21] B.V. Mohite, S.V. Patil, “A novel biomaterial: bacterial cellulose and its new era applications”, Biotechnol. Appl. Biochem., vol. 61, pp. 101-110, 2014. [22] C. Castro, N. Cordeiro, M. Faria, R. Zuluaga, J. Putaux, I. Filpponen, et al., “In-situ glyoxalization during biosynthesis of bacterial cellulose”, Carbohydr. Polym., vol. 126, pp. 32-39, 2015. [23] N. Cordeiro, C. Gouveia, A.G.O. Moraes, S.C. Amico, “Natural fibers characterization by inverse gas chromatography”, Carbohydr. Polym., vol. 84, pp. 110–117, 2011.



فایل مقاله
تعداد بازدید: 1023
تعداد دریافت فایل مقاله : 48



طراحی پرتال (طراحی پورتال): آرانا نتورکطراحی پرتال (طراحی پورتال): آرانا نتورک