فهرست

نانوزیست‌حسگر فوق‌العاده حساس و سریع بر پایه‌ی هیبرید پلاگزیتونیک نانومیله طلا-کوانتوم دات RQ خودسازمان‌ده آپتامری برای شناسایی تروپونین I قلبی انسانی

نشریه: سال دوم-شماره3-پاییز 1394 - مقاله 3   صفحات :  131 تا 140



کد مقاله:
nm-163

مولفین:
زهرا رضایی: دانشگاه تربیت مدرس - دانشکده علوم زیستی
بیژن رنجبر: دانشگاه تربیت مدرس - گروه بیوفیزیک و نانوبیوتکنولوژِ


چکیده مقاله:

چکیده سکته‌ی حاد قلبی یکی از علل اصلی مرگ‌ومیر در سراسر جهان است. روش‌های متداول تشخیص سکته‌ی قلبی پرهزینه و زمان‌بر هستند و معمولاً از نمونه‌ی خون به عنوان نمونه‌ی زیستی استفاده می‌کنند؛ بنابراین، ساخت یک ابزار تشخیصی فوق‌العاده سریع، حساس و غیرتهاجمی ضروری به نظر می‌رسد. در این تحقیق یک نانوزیست‌حسگر جدید فوق‌العاده حساس و فلورسنت پلاگزیتونیک آپتامری که از جفت‌شدگی پلاسمون-اگزایتون هیبرید نانومیله‌ی طلا-کوانتوم‌دات RQ ساخته‌شده است، جهت تشخیص پروتئین انسانی تروپونین I قلبی cTnI، بیومارکر طلایی تشخیص سکته‌ی حاد قلبی، معرفی می‌گردد. آزمایش‌های پیش-بالینی با کمک بزاق انجام گرفت. اتصال پروتئین cTnI به آپتامر منجر به تشدید فلورسانس سامانه هیبرید پلاگزیتونیک می‌شود. حد تشخیص این نانوزیست‌حسگر نیم فمتومولار است. به نظر می‌رسد که این نانوزیست‌حسگر جدید بر پایه‌ی سامانه هیبرید پلاگزیتونیک RQ، می‌تواند پنجره‌ی جدیدی را به سوی فرصت‌های تازه برای توسعه‌ی طراحی و ساخت نانو‌زیست‌حسگرها در حوزه‌ی نانوزیست‌فناوری باز کند.


Article's English abstract:

Acute Myocardial Infarction AMI is one of the leading causes of death throughout the world. Usual methods for detecting AMI are expensive, time-consuming and using blood samples as biological samples. Therefore, creating an ultra-fast, sensitive and non-invasive diagnostic test is necessary. Herein, a novel ultra-sensitive, fluorescent, plasmon-exciton coupling hybrid of a Gold Nano Rod-Quantum Dot RQ -based aptamer nanobiosensor is presented for the detection of human cardiac troponin I cTnI, the golden biomarker of AMI, and a preclinical test is performed with saliva. The binding of the cTnI protein to aptamer leads to a fluorescence enhancement of the plexcitonic hybrid system. The limit of detection of this nanobiosensor is 0.5 fM. It seems this novel nanobiosensor of the RQ plexcitonic hybrid system can open up new opportunities for the design and fabrication of nanobiosensor progress in nanobiotechnology.


کلید واژگان:
آپتامر، تروپونین I قلبی انسانی، سکته‌ی حاد قلبی، کوانتوم دات، نانوزیست‌حسگر، نانومیله‌ی طلا

English Keywords:
Acute Myocardial Infarction, Aptamer, Gold Nano Particle, Human Cardiac Troponin I, Nanobiosensor, Quantum Dot.

منابع:

English References:
[1] “World Health Organization. The top 10 causes of death,” http://www.who.int/mediacentre/factsheets/fs310/en, May 8, 2015. [2] J. A. Ambrose, and M. Singh, “Pathophysiology of coronary artery disease leading to acute coronary syndromes,” F1000Prime. Rep., vol. 7, pp. 08, 2015. [3] V. Singh, P. Martinezclark, M. Pascual, E. S. Shaw, and W. W. O'Neill, “Cardiac biomarkers - the old and the new: a review,” Coron. Artery Dis., vol. 21, no. 4, pp. 244-256, 2010. [4] M. A. Daubert, and A. Jeremias, “The utility of troponin measurement to detect myocardial infarction: review of the current findings,” Vasc. Health Risk Manage., vol. 6, pp. 691-699, 2010. [5] D. Chan, and L. L. Ng, “Biomarkers in acute myocardial infarction,” BMC Med., vol. 8, pp. 34, 2010. [6] S. Sharma, P. G. Jackson, and J. Makan, “Cardiac troponins,” J. Clin. Pathol., vol. 57, no. 10, pp. 1025-1026, 2004. [7] T. Schreier, L. Kedes, and R. Gahlmann, “Cloning, structural analysis, and expression of the human slow twitch skeletal muscle/cardiac troponin C gene,” J. Biol. Chem., vol. 265, no. 34, pp. 21247-21253, 1990. [8] J. G. Schwartz, T. J. Prihoda, J. H. Stuckey, C. L. Gage, and M. L. Darnell, “Creatine kinase MB in cases of skeletal muscle trauma,” Clin. Chem., vol. 34, no. 5, pp. 898-90, 1988. [9] S. Hasi?, E. Kiseljakovi?, R. Jadri?, J. Radovanovi?, and M. Winterhalter-Jadri?, “Cardiac troponin I: the gold standard in acute myocardial infarction diagnosis,” Bosnian J. Basic Med. Sci., vol. 3, no. 3, pp. 41-44, 2003. [10] Y. Kim, H. Kim, S.-Y. Kim, H. K. Lee, H. J. Kwon, Y. G. Kim, J. Lee, H. M. Kim, and B. H. So, “Automated heart-type fatty acid-binding protein assay for the early diagnosis of acute myocardial infarction,” Am. J. Clin. Pathol., vol. 134, no. 1, pp. 157-162, 2010. [11] Y. U. Budak, K. Huysal, M. Bulut, and M. Polat, “Evaluation in an emergency department of rapid separator tubes containing thrombin for serum preparation prior to hs-cTnT and CK-MB analyses,” BMC Clin. Pathol., vol. 13, pp. 20, 2013. [12] P. O. Collinson, D. C. Gaze, F. Morris, B. Morris, A. Price, and S. Goodacre, “Comparison of biomarker strategies for rapid rule out of myocardial infarction in the emergency department using ACC/ESC diagnostic criteria,” Ann. Clin. Biochem., vol. 43, no. 4, pp. 273-280, 2006. [13] A. S. Jaffe, L. Babuin, and F. S. Apple, “Biomarkers in acute cardiac disease: the present and the future,” J. Am. Coll. Cardiol., vol. 48, no. 1, pp. 1-11, 2006. [14] A. Qureshi, Y. Gurbuz, and J. H. Niazi, “Biosensors for cardiac biomarkers detection: A review,” Sens. Actuators, B, vol. 171-172, no. 2012, pp. 62-67, 2012. [15] K. Tataris, S. Kivlehan, and P. Govindarajan, “National Trends in the Utilization of Emergency Medical Services for Acute Myocardial Infarction and Stroke,” West. J. Emerg. Med., vol. 15, no. 7, pp. 744-748, 2014. [16] R. S. P. Malon, S. Sadir, M. Balakrishnan, and E. P. Córcoles, “Saliva-based biosensors: noninvasive monitoring tool for clinical diagnostics,” BioMed. Res. Int., vol. 2014, pp. 962903, 2014. [17] F. Wei, and D. T. W. Wong, “Point-of-care platforms for salivary diagnostics,” Chin. J. Dent. Res., vol. 15, no. 1, pp. 7-15, 2012. [18] I. Mirzaii-Dizgah, and E. Riahi, “Salivary troponin I as an indicator of myocardial infarction,” Indian J. Med. Res., vol. 138, no. 6, pp. 861-865, 2013. [19] M. A. A. Rahim, Z. H. A. Rahim, W. A. W. Ahmad, and O. H. Hashim, “Can saliva proteins be used to predict the onset of acute myocardial infarction among high-risk patients?,” Int. J. Med. Sci., vol. 12, no. 4, pp. 329-335, 2015. [20] G. H. Carpenter, “The secretion, components, and properties of saliva,” Annu. Rev. Food Sci. Technol., vol. 4, pp. 267-276, 2013. [21] P. D. V. de Almeida, A. M. T. Grégio, M. A. N. Machado, A. A. S. de Lima, and L. R. Azevedo, “Saliva composition and functions: a comprehensive review,” J. Contemp. Dent. Pract., vol. 9, no. 3, pp. 72-80, 2008. [22] J. P. Chambers, B. P. Arulanandam, L. L. Matta, A. Weis, and J. J. Valdes, “Biosensor recognition elements,” Curr. Issues Mol. Biol., vol. 10, no. 1-2, pp. 1-12, 2008. [23] G. Mayer, “The chemical biology of aptamers,” Angew. Chem. Int. Ed., vol. 48, no. 15, pp. 2672-2689, 2009. [24] R. Stoltenburg, C. Reinemann, and B. Strehlitz, “SELEX--a (r)evolutionary method to generate high-affinity nucleic acid ligands,” Biomol. Eng., vol. 24, no. 4, pp. 381-403, 2007. [25] A. Ozer, J. M. Pagano, and J. T. Lis, “New Technologies Provide Quantum Changes in the Scale, Speed, and Success of SELEX Methods and Aptamer Characterization,” Mol. Ther. Nucleic Acids, vol. 3, no. 4, pp. e183, 2014. [26] A. Hatef, S. M. Sadeghi, É. Boulais, and M. Meunier, “Quantum dot-metallic nanorod sensors via exciton-plasmon interaction,” Nanotechnology, vol. 24, no. 1, pp. 015502, 2013. [27] S. M. Sadeghi, A. Hatef, and M. Meunier, “Quantum detection and ranging using exciton-plasmon coupling in coherent nanoantennas,” Appl. Phys. Lett., vol. 102, no. 20, pp. 203113, 2013. [28] J. Chen, Q. Huang, Q. G. Du, D. Zhao, F. Xu, J. Pan, W. Lei, and A. Nathan, “Localized surface plasmon resonance enhanced quantum dot light-emitting diodes via quantum dot-capped gold nanoparticles,” RSC Adv., vol. 4, no. 101, pp. 57574-57579, 2014. [29] N. K. Pathak, A. Ji, and R. P. Sharma, “Study of efficiency enhancement in layered geometry of excitonic-plasmonic solar cell,” Appl. Phys. A: Mater. Sci. Process., vol. 115, no. 4, pp. 1445-1450, 2013. [30] A. Hatef, S. M. Sadeghi, S. Fortin-Deschênes, E. Boulais, and M. Meunier, “Coherently-enabled environmental control of optics and energy transfer pathways of hybrid quantum dot-metallic nanoparticle systems,” Opt. Express, vol. 21, no. 5, pp. 5643-5653, 2013. [31] J. C. Bian, F. Yang, Z. Li, J. L. Zeng, X. W. Zhang, Z. D. Chen, J. Z. Y. Tan, R. Q. Peng, H. Y. He, and J. Wang, “Mechanisms in photoluminescence enhancement of ZnO nanorod arrays by the localized surface plasmons of Ag nanoparticles,” Appl. Surf. Sci., vol. 258, no. 22, pp. 8548-8551, 2012. [32] T. Pons, I. L. Medintz, K. E. Sapsford, S. Higashiya, A. F. Grimes, D. S. English, and H. Mattoussi, “On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles,” Nano Lett., vol. 7, no. 10, pp. 3157-3164, 2007. [33] P. Viste, J. Plain, R. Jaffiol, A. Vial, P. M. Adam, and P. Royer, “Enhancement and quenching regimes in metal-semiconductor hybrid optical nanosources,” ACS Nano, vol. 4, no. 2, pp. 759-764, 2010. [34] Q. Wang, H. Wang, C. Lin, J. Sharma, S. Zou, and Y. Liu, “Photonic interaction between quantum dots and gold nanoparticles in discrete nanostructures through DNA directed self-assembly,” Chem. Commun., vol. 46, no. 2, pp. 240-242, 2010. [35] Y. Q. Li, L. Y. Guan, H. L. Zhang, J. Chen, S. Lin, Z. Y. Ma, and Y. D. Zhao, “Distance-dependent metal-enhanced quantum dots fluorescence analysis in solution by capillary electrophoresis and its application to DNA detection,” Anal. Chem., vol. 83, no. 11, pp. 4103-4109, 2011. [36] C. Ban, K. M. Song, and W. Jeong, U.S. Patent 8 404 448, 2012 [DNA aptamer specifically binding to human cardiac troponin I.] [37] M. Zuker, “Mfold web server for nucleic acid folding and hybridization prediction,” Nucleic Acids Res., vol. 31, no. 13, pp. 3406-3415, 2003. [38] T. T. Moghadam, B. Ranjbar, K. Khajeh, S. M. Etezad, K. Khalifeh, and M. R. Ganjalikhany, “Interaction of lysozyme with gold nanorods: conformation and activity investigations,” Int. J. Biol. Macromol., vol. 49, no. 4, pp. 629-636, 2011. [39] A. Azizi, B. Ranjbar, T. T. Moghadam, and Z. Bagheri, “Plasmonic Circular Dichroism Study of DNA–Gold Nanoparticles Bioconjugates,” Plasmonics, vol. 9, no. 2, pp. 273-281, 2013. [40] C. S. Wu, J. M. Cupps, and X. Fan, “Compact quantum dot probes for rapid and sensitive DNA detection using highly efficient fluorescence resonant energy transfer,” Nanotechnology, vol. 20, no. 30, pp. 305502-305529, 2009. [41] J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater., vol. 7, no. 6, pp. 442-453, 2008. [42] S. M. Goodman, V. Singh, J. C. Ribot, A. Chatterjee, and P. Nagpal, “Multiple Energy Exciton Shelves in Quantum-Dot–DNA Nanobioelectronics,” J. Phys. Chem. Lett., vol. 5, no. 21, pp. 3909-3913, 2014. [43] M. Ramezani, N. Mohammad Danesh, P. Lavaee, K. Abnous, and S. Mohammad Taghdisi, “A novel colorimetric triple-helix molecular switch aptasensor for ultrasensitive detection of tetracycline,” Biosens. Bioelectron., vol. 70, pp. 181-187, 2015. [44] M. F. M. Fathil, M. K. Md Arshad, S. C. B. Gopinath, U. Hashim, R. Adzhri, R. M. Ayub, A. R. Ruslinda, M. Nuzaihan M N, A. H. Azman, M. Zaki, and T. H. Tang, “Diagnostics on acute myocardial infarction: Cardiac troponin biomarkers,” Biosens. Bioelectron., vol. 70, pp. 209-220, 2015.



فایل مقاله
تعداد بازدید: 1046
تعداد دریافت فایل مقاله : 43



طراحی پرتال (طراحی پورتال): آرانا نتورکطراحی پرتال (طراحی پورتال): آرانا نتورک