فهرست

سنتز نقاط کوانتومی گرافن تیول¬دار و کاربرد آن در اندازه¬گیری یون جیوه

نشریه: بهار 1398 - مقاله 1   صفحات :  1 تا 10



کد مقاله:
nm-335

مولفین:
محمود روشنی: دانشگاه ایلام - گروه شیمی
مرضیه شکری: دانشگاه ایلام - گروه شیمی
سمیه فرخی: مرکز آموزش علمی- کاربردی دهلران - گروه صنایع شیمیایی


چکیده مقاله:

در این پروژه ابتدا نقاط کوانتومی گرافن تیول¬دار سنتز شد. شناسایی ماده سنتز شده با استفاده از طیف¬سنجی مادون قرمز تبدیل فوریه انجام شد و مشخص شد که نقاط کوانتومی با موفقیت سنتز شده است. در ادامه با استفاده از دستگاه میکروسکوپ الکترونی عبوری اندازه نانوذرات سنتز شده مورد ارزیابی قرار گرفت؛ نتایج نشان داد که اندازه نانوذرات زیر 50 نانومتر می¬باشد. در این مطالعه، تیول¬دار شدن نقاط کوانتومی گرافن به وسیله سیستامین انجام شد. نتایج به دست آمده نشان داد به کمک نقاط کوانتومی گرافن تیول¬دار، مقادیر بسیار ناچیز جیوه قابل شناسایی می¬باشد. حد تشخیص روش µM 16/0 به دست آمد و محدوده خطی غلظت µM 5/0 تا mM 0/1 تعیین شد. سرانجام کاربرد این نانو ذرات برای اندازه¬گیری جیوه در نمونه¬های حقیقی و گزینش¬پذیری روش با نتایج رضایت¬بخشی مورد مطالعه قرار گرفت.


Article's English abstract:

In this work, at first thiolated graphene quantum dot tio-GQD was synthesized. Characterization of the synthesized compound was caried out by the use of infrared spectroscopy. The obtained results confirm that the thiolated graphene quantum dot was succesfully synthesized. The size of these nanoparticles was investigated by TEM. On the base of achieved images, the average dimeters of nanoparticles were estimated about 50 nm. The oxidized GQD were thiol functionalized with cysteamine. In the following the prepared nanoparticles were applied for the determination of trace amount of mercury. The limit of detection was obtained 0.160 μM and linear concentration rang 0.5 µM to 1 mM. Finaly the synthesized thiolated graphene quantum dot was applied for the determination of mercury in the real samples and selectivity with satisfactory results


کلید واژگان:
یون جیوه، نقاط کوانتومی گرافن تیول¬دار، نشر نورتابی، طول موج تحریکی

English Keywords:
Mercury ion, Thiolated graphene quantum dots, Fluorescence emission, Excitation wavelength

منابع:
نداریم

English References:
[1] X. Zhu, S.D. Alexandratos, "Determination of trace levels of mercury in aqueous solutions by inductively coupled plasma atomic emission spectrometry: elimination of the memory effect", Microchem. J., vol. 86, pp. 37-41, 2007. [2] N.L.D. Filho, D.R.D. Carmo, "Study of an organically modified clay: selective adsorption of heavy metal ions and voltammetric determination of mercury(II)", Talanta.,vol. 68, pp. 919-927, 2006. [3] X. Li, Z. Wang, "Determination of mercury by intermittent flow electrochemical cold vapor generation coupled to atomic fluorescence spectrometry", Anal. Chim. Acta., vol. 588, pp. 179-183, 2007. [4] A.M.A. Nascimento, E. Chartone Souza, "Operon mer: bacterial resistance to mercury and potential for bioremediation of contaminated environments", Genet. Mol. Res. vol. 2, pp. 92-101, 2003. [5] F. Berglund, M. Bertin. Chemical fallout. Springfield: Thomas Publishers, 1969. [6] C.R. Krishnamoorthi, P. Vishwanathan, Toxic metal in the Indian environment. New Delhi: Tata McGraw-Hill Publishing Co Ltd, 1991. [7] M.F. Yardim, T. Budinova, E. Ekinci, N. Petrov, M. Razvigorova, V. Minkova, "Removal of mercury (II) from aqueous solution by activated carbon obtained from furfural", Chemosphere., vol. 52, pp. 835–841, 2003. [8] M. Hadavifar, N. Bahramifar, H. Younesi, Qin Li, "Adsorption of mercury ions from synthetic and real wastewater aqueous solution by functionalized multi- walled carbon nanotube with both amino and [9] S.M. Park, H.S. Choi, "Sensitized spectrophotometric determination of trace Hg (II) in benzalkonium chloride media", Anal. Chim. Acta. Vol. 459, pp. 75-81, 2002. [10] D. Karunasagar, J. Arunachalam, S. Gangadharan, "Development of a ‘ collect and punch’ cold vapor inductively coupled plasma mass spectrometric method for the direct determination of mercury at nanograms per litre levels", J. Anal. Atom., Spectrom. Vol. 13, pp. 679-682, 1998. [11] I, Touridom, A.K. Sakira, D. Mertens, S. N. Ronkart, J. M. Kauffmann, "Determination of ground water rmercury (II) content using a disposable gold modified screen printed carbon electrode, Talanta, vol. 152, pp. 335–340, 2016. [12] N. Pourreza, K.Ghanemi, "Determination of mercury in wate rand fish samples b ycold vapor atomi cabsorption spectrometry after solid phase extractionon agar modified with 2-mercaptobenzimidazole, J. Hazard. Mater., vol. 161, pp. 982–987, 2009. [13] V. Chandraa, K.S. Kim, "Highly selective adsorption of Hg2 by a polypyrrole reduced graphene oxide composite, Chem. Commun., vol. 47, pp. 3942-3944, 2011. [14] X. Niu, Y. Ding, C. Chena, H. Zhao, M. Lan, "A novel electrochemical biosensor for Hg 2 determination based on Hg 2 induced DNA hybridization", Sens. Actuators B., vol. 158,pp. 383-387, 2011. [15] T. Zhang, Z. Cheng, Y. Wang, Z. Li, C. Wang, Y. Li, Y. Fang, "Self-Assembled 1-Octa decanethiol Monolayers on Graphene for Mercury Detection", Nano Lett., vol. 10, pp. 4738- 4741, 2010. [16] H. Chen, J. Chen, X. Jin, D. Wei, "Determination of trace mercury species by thiolated groups", Chem. Engin. J., vol. 237, pp. 217–228, 2014. [17] Z. Gan, H. Xu, Y. Hao, "Mechanism for excitation-dependent photoluminescence from graphene quantum dots and other graphene oxide derivates: Consensus, debates and challenges". Nanoscale., vol. 14, pp. 7794-7807, 2016. [18] M. Roushani, M. Mavaei, "Synthesis of CdTe quantum dot with high photocatalytic activity for degradation and photocatalytic decolorization of organic pollutants under visible light". J. Color. Sci. Tech., vol. 10, pp. 117-127, 2015. [19] H. Razmi, R. Mohammad-Rezaei. "Graphene quantum dots as a new substrate for immobilization and direct electrochemistry of glucose oxidase: Application to sensitive glucose determination". Biosene. Bioelectron., vol. 41, pp. 498-504, 2013. [20] A. R. Kortan, R. Hull, R. L. Opila, M. G. Bawendi, M. L. Steigerwald, P. J. Carroll, and L. E. Brus, “Nucleation and Growth of CdSe on ZnS Quantum Crystallite Seeds , and Vice Versa , in Inverse Micelle Media,” J. Am. Chem. SOC, vol. 112, pp. 1327-1332, 1990. [21] K.P. Loh, Q.L. Bao, G. Eda, M. Chhowalla, "Graphene oxide as a chemically tunable platform for optical applications". Nat. Chem. Vol. 2. pp. 1015-1024, 2010. [22] J. Peng, W. Gao, B.K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L.B. Alemany, X. Zhan, G. Gao, S.A. Vithayathil, B.A. Kaipparettu, A.A. Marti, T. Hayashi, J.J. Zhu, P.M. Ajayan, "Graphene quantum dots derived from carbon fibers". Nano Lett. Vol. 12. pp. 844-849, 2012. [23] X. Gao, J. Wu, X. Wei, C. He, X. Wang, G. Guo, Q. Pu, "Facile one-step photochemical synthesis of water soluble CdTe(S) nanocrystals with high quantum yields", J. Mater. Chem. A., vol. 22. pp. 6367-6373, 2012. [24] L. Li, H. Qian, N. Fang, and J. Ren, "Significant enhancement of the quantum yield of CdTe nanocrystals synthesized in aqueous phase by controlling the pH and concentrations of precursor solutions", J. Lumin., vol. 116, pp. 56- 59, 2006. [25] H. R. Rajabi, M. Shamsipur, S. M. Pourmortazavi. "Preparation of a novel potassium ion imprinted polymeric nanoparticles based on dicyclohexyl 18C6 for selective determination of K ion in different water samples", Mater. Sci. Eng. C., vol. 33, pp. 3374- 3381, 2013. [26] M. Roushani, M. Shamsipur, H.R. Rajabi, "Highly selective detection of dopamine in the presence of ascorbic acid and uric acid using thioglycolic acid capped CdTe quantum dots modified electrode", Electro. Anal. Chem. vol. 712, pp. 19-24, 2014. [27] H. R. Rajabi, M. Shamsipur, A. A. Khosravi, O. Khani, M. H. Yousefi. "Selective spectrofluorimetric determination of sulfide ion using manganese doped ZnS quantum dots as luminescent probe". Spectro. Chim. Acta. A. vol. 107, pp. 256-262, 2013. [28] Y. Li, R. Guo, S. Zhou, X. Li, L. Fan, N. H. Voelcker, "Rhodamine-Functionalized Graphene Quantum Dots for Detection of Fe3 in Cancer Stem Cells". ACS Appl. Mater. Interfaces. vol. 7, pp. 23958- 23966, 2015. [29] J. Zhao, L. Zhao, C. Lan, Sh. Zhao, Graphene quantum dots as effective probes for label-free fluorescence detection of dopamine, Sens. Actuators B. vol. 223, pp. 246-251, 2016. [30] L. Minati, S. Torrengo, D. Maniglio, C. Migliaresi, G. Speranza. "Luminescent graphene quantum dots from oxidized multi-walled carbon Nanotubes. Mater. Chem. Phys. Vol. 137, pp. 12-16, 2012.



فایل مقاله
تعداد بازدید: 1277
تعداد دریافت فایل مقاله : 80