فهرست

نانو¬ذرات پالادیم تثبیت شده بر روی سلولز اصلاح شده با کوانتم دات های نیتروژن-دار گرافنی به عنوان یک کاتالیزور موثر برای اکسایش اتیل¬بنزن به استوفنون

نشریه: تابستان ۱۳۹۶ - مقاله 4   صفحات :  129 تا 138



کد مقاله:
nm-255

مولفین:
سجاد کشی پور: دانشگاه ارومیه - دانشکده نانوشیمی
کامران اداک: دانشگاه ارومیه - پژوهشکده نانوفناوری


چکیده مقاله:

یک کاتالیزور ناهمگن از نانوکامپوزیت سلولز تهیه، شناسایی و برای اکسایش اتیل بنزن به استوفنون استفاده شد. نانوکامپوزیت سلولز از طریق اصلاح سلولز با نقاط کوانتمی گرافن دوپه شده با نیتروژن و ترسیب نانوذرات پالادیم بر روی آن سنتز شد. این کاتالیزور برای واکنش اکسایش اتیل بنزن در دمای محیط با استفاده از پتاس و اکسنده¬ی سبز هیدروژن پراکسید با بهره بالا و گزینش پذیری عالی در حلال استونیتریل استفاده شد. همچنین کاتالیزور قابل بازیابی بوده و کاتالیزور بازیافت شده برای 5 بار اکسایش اتیل بنزن را بدون کاهش بهره انجام داد.


Article's English abstract:

A heterogeneous catalyst, obtained from cellulose nanocomposite, was prepared, characterized and applied for the oxidation of ethylbenzene to acetophenone. Cellulose nanocomposite was synthesized via modifying of cellulose with N-doped graphene quantum dots, and subsequent deposition of Pd nanoparticles. This catalyst applied in the oxidation reaction of ethylbenzene at room temperature using KOH and hydrogen peroxide as a green oxidant with high yield and excellent selectivity in acetonitrile as the solvent. Also, the catalyst is recyclable and the recovered catalyst is applicable for 5 times without decrease in yield.


کلید واژگان:
اکسایش، اتیل بنزن، نقاط کوانتم گرافنی، نانو ذرات پالادیم ،نانوکاتالیزور، سلولز

English Keywords:
Oxidation; Ethylbenzene, Graphene quantum dots, Pd nanoparticle, Cellulose Nanocatalyst.

منابع:

English References:
[1] Y. Habibi, L. A. Lucia, O. J. Rojas, “Cellulose nanocrystals: chemistry, self-assembly, and applications” Chem. Rev., vol, 110, pp. 3479-3500, 2010. [2] K. R. Reddy, N. S. Kumar, “Cellulose-supported copper(0) catalyst for aza-michael addition” Synlett, pp. 2246-2250, 2006. [3] C. M. Cirtiu, A. F. Dunlop-Brière, A. Moores, “Cellulose nanocrystallites as an efficient support for nanoparticles of palladium: application for catalytic hydrogenation and Heck coupling under mild conditions” Green Chem., vol, 13, pp. 288-291, 2011. [4] S. Keshipour, S. Shojaei, A. Shaabani, “Palladium nano-particles supported on ethylenediaminefunctionalized cellulose as a novel and efficient catalyst for the Heck and Sonogashira couplings in water” Cellulose, vol, 20, pp. 973-980, 2013. [5] S. Keshipour, A. Shaabani, “Copper(I) and palladium nanoparticles supported on ethylenediamine-functionalized cellulose as an efficient catalyst for the 1,3-dipolar cycloaddition/direct arylation sequence” Appl. Organometal. Chem., vol, 28, pp. 116- 119, 2014. [6] A. Shaabani, S. Keshipour, M. Hamidzad, M. Seyyedhamzeh, “Cobalt(II) supported on ethylenediamine-functionalized nanocellulose as an efficient catalyst for room temperature aerobic oxidation of alcohols” J. Chem. Sci., vol, 126, pp. 111-115, 2014. [7] A. Shaabani, S. Keshipour, M. Hamidzad, S. Shaabani, “Cobalt(II) phthalocyanine covalently anchored to cellulose as arecoverable and efficient catalyst for the aerobic oxidation of alkylarenes and alcohols” J. Mol. Catal. A Chem., vol, 395, pp. 494-499, 2014. [8] L. Cao, M. J. Meziani, S. Sahu, Y. P. Sun, “Photoluminescence properties of graphene versus other carbon nanomaterials” Acc. Chem. Res., vol, 46, pp. 171-180, 2013. [9] Y. Dong, H. Pang, H. Bin Yang, C. Guo, J. Shao, Y. Chi, C. M. Li, T. Yu, “Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission” Angew. Chem. Int. Ed., vol, 52, pp. 7800-7804, 2013. [10] A. Valizadeh, H. Mikaeili, M. Samiei, S. M. Farkhani, N. Zarghami, M. Kouhi, A. Akbarzadeh, S. Davaran, “Quantum dots: synthesis, bioapplications, and toxicity” Nanoscale Res. Lett., vol, 7, pp. 480-494, 2012. [11] S. T. Yang, L. Cao, P. G. Luo, F. Lu, X. H. F. Wang, M. J. Meziani, Y. Liu, G. Qi, Y. P. Sun, “Carbon dots for optical imaging in vivo” J. Am. Chem. Soc., vol, 131, pp. 11308-11309, 2009. [12] C. Ding, A. Zhu, Y. Tian, “Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging” Acc. Chem. Res. vol, 47, pp. 20-30, 2014. [13] P. Huang, J. Lin, X. Wang, Z. Wang, C. Zhang, M. He, K. Wang, F. Chen, Z. Li, G. Shen, D. Cui, X. Chen, “Light-triggered theranostics based on photosensitizer-conjugated carbon dots for simultaneous enhanced-fluorescence imaging and photodynamic therapy” Adv. Mater., vol, 24, pp. 5104-5110, 2012. [14] M. Zheng, S. Liu, J. Li, D. Qu, H. Zhao. X. Guan, X. Hu, Z. Xie, X. Jing, Z. Sun, “Integrating oxaliplatin with highly luminescent carbon dots: an unprecedented theranostic agent for personalized medicine” Adv. Mater., vol, 26, pp. 3554-3560, 2014. [15] H. M. R. Goncalves, A. J. Duarte, J. C. G. Esteves da Silva, “Optical fiber sensor for Hg(II) based on carbon dots” Biosens Bioelectron, vol, 26, pp. 1302-1306, 2010. [16] X. Zhang, Y. Zhang, Y. Wang, S. Kalytchuk, S. V. Kershaw, Y. Wang, P. Wang, T. Zhang, Y. Zhao, H. Zhang, T. Cui, Y. Wang, J. Zhao, W. W. Yu and A. L. Rogach, “Color-switchable electroluminescence of carbon dot light-emitting diodes” ACS Nano, vol, 7, pp. 11234-11241, 2013. [17] F. Wang, Y. H. Chen, C. Y. Liu, D. G. Ma, “White light-emitting devices based on carbon dots' electroluminescence” Chem. Commun., vol, 47, pp. 3502-3504, 2011. [18] H. Li, X. He, Z. Kang, H. Huang, Y. Liu, J. Liu, S. Lian, C. H. Tsang, X. Yang, S. T. Lee, “Water-soluble fluorescent carbon quantum dots and photocatalyst design” Angew Chem., Int. Ed., vol, 49, pp. 4430-4434, 2010. [19] D. Qu, M. Zheng, P. Du, Y. Zhou, L. Zhang, D. Li, H. Tan, Z. Zhao, Z. Xie, Z. Sun, “Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts” Nanoscale, vol, 5, pp. 12272-12277, 2013. [20] S. Kundu, R. M. Yadav, T. N. Narayanan, M. V. Shelke, R. Vajtai, P. M Ajayan, V. K. Pillai, “Synthesis of N, F and S co-doped graphene quantum dots” Nanoscale, vol, 7, pp. 11515-11519, 2015. [21] D. Qu, M. Zheng, L. Zhang, H. Zhao, Z. Xie, X. Jing, R. E. Haddad, H. Fan, “Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots” Z. Sun, Sci. Rep., vol. 4, pp. 5294, 2014. [22] S. Li, S. R. Zhai, Q. D. An, M. H. Li, Y. Song, X. W. Song, “Designed synthesis of multifunctional Fe3O4@SiO2–NH2@CS–Co(II) towards efficient oxidation of ethylbenzene” Mat. Res. Bull., vol, 60, pp. 665–673, 2014. [23] M. Jafarpour, H. Kargar, A. Rezaeifard, “A cobalt Schiff base complex on TiO2 nanoparticles as an effective synergistic nanocatalyst for aerobic C–H oxidation” RSC Adv., vol, 6, pp. 25034–25046, 2016. [24] H. Wang, W. Sun, C. Xia, “An easily recoverable and efficient catalyst for heterogeneous cyclopropanation of olefins” J. Mol. Catal. A Chem., vol, 206, pp. 199–203, 2003. [25] D. H. Shen, L. T. Ji, Z. G. Liu, W. B. Sheng, C. C. Guo, “Ethylbenzene oxidation over hybrid metalloporphyrin@silica nanocomposite” J. Mol. Catal. A Chem., vol, 379, pp. 15–20. 2013. [26] D. Habibi, A. R. Faraji, M. Arshadi, S. Heydari, A. Gil, “Efficient catalytic systems based on cobalt for oxidation of ethylbenzene, cyclohexene and oximes in the presence of N-hydroxyphthalimide” Appl. Catal. A Gen., vol, 466, pp. 282–292, 2013.



فایل مقاله
تعداد بازدید: 916
تعداد دریافت فایل مقاله : 23