فهرست

حذف یون‌های مس II و سرب II توسط بنتونیت اصلاح شده با Nd-TiO2 و برخی پلیمرهای آلی

نشریه: بهار ۱۳۹۷ - مقاله 1   صفحات :  1 تا 12



کد مقاله:
nm-239

مولفین:
سوسن صمدی
علی پارسا: دانشگاه آزاد اسلامی واحد یادگار امام خمینی ره شهرری - دانشکده علوم پایه
آرزو هادیان: دانشگاه آزاد اسلامی واحد یادگار امام خمینی ره شهرری - دانشکده علوم پایه
عاطفه پرتوی مطلق: دانشگاه آزاد اسلامی واحد یادگار امام خمینی ره شهرری - دانشکده علوم پایه
سیدامیرعباس ذکریا: دانشگاه آزاد اسلامی - واحد یادگار امام خمینی (ره) شهر ری


چکیده مقاله:

به‌منظور افزایش ظرفیت جذب، با استفاده از دو پلیمر پلی‌اتیلن‌گلیکولPEG و پلی‌وینیل‌پیرولیدون PVP، نانو کامپوزیت‌های Nd-TiO2/PEG/Bentonite و Nd-TiO2/PVP/bentonite به روش سل-ژل ساخته شد. میکرو ساختار نانو کامپوزیت‌های سنتزی توسط آنالیزهای XRD، FESEM و EDS مورد بررسی قرار گرفت و ساختار مورد انتظار و تشکیل فاز آناتاز تیتانیا را تائید کرد. از نانو جاذب‌های ساخته‌شده برای حذف دو یون مس II و سرب II از آب استفاده و پارامترهای مؤثر بر حذف، بهینه‌سازی شدند که عبارت‌اند از: زمان تماس برای نانو کامپوزیت TiO2/PEG/bentonite و TiO2/PVP/bentonite به ترتیب برابر 30 و 60 ثانیه و مقدار جاذب، pH و دما برای هر دو نانو جاذب به ترتیب برابر 005/0 گرم، 7 و ℃ 25 است. بررسی اثر یون‌های مزاحم هیچ تأثیر قابل‌ملاحظه‌ای روی راندمان حذف نداشت. مطالعه ایزوترم جذب نشان داد که تمام داده‌های تجربی از مدل ایزوترم جذب لانگمویر پیروی می‌کنند.


Article's English abstract:

In order to increase adsorption capacity, Nd-TiO2/PEG/Bentonite and Nd-TiO2/PVP/Bentonite nanocomposites were synthesized by PEG and PVP, with sol-gel method. Microstructure nanocomposites were investigated by XRD, FESEM and EDS analyses. These analyzes confirmed the expected structure and formation of anatase titania phase. Synthetic nano-sorbents used to removal of Cu II and Pb II ions from water. The affective removal parameter was optimized and that contact time for TiO2/PEG/bentonite and TiO2/PVP/bentonite nanocomposites is 30 and 60 seconds, respectively, and for both nanocomposite, sorbent amount, temperature and pH were 0.005 g, 7 and 25℃, respectively. Investigation of interfering ions didn’t have any considerable impact on removal efficiency. The isotherm adsorption shows all the experimental data followed the Langmuir model.


کلید واژگان:
حذف، مس (II)، سرب (II)، بنتونیت، تیتانیا

English Keywords:
removal, copper (II), lead (II), bentonite, titania

منابع:

English References:
[1] R. Ahmad, and A. Mirza, “Sequestration of heavy metal ions by Methionine modified bentonite/Alginate (Meth-bent/Alg): A bionanocomposite,” Ground water Sustain. Dev., vol. 1, pp. 50–58, 2015. [2] R. Ahmad, and R. Kumar, “Kinetic and Thermodynamic Studies of Brilliant Green Adsorption onto Carbon/Iron Oxide Nanocomposite,” J. Korean Chem. Soc., vol. 54(1), pp. 125-130, 2010. [3] “Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc, ” Institute of Medicine (US) Panel on Micronutrients, Washington (DC): National Academies Press (US); 2001. [4] M. Malakootian, and Z. Khashi, “Heavy metals contamination of drinking water supplies in southeastern villages of Rafsanjan plain: survey of arsenic, cadmium, lead and copper,” J. Health Field, vol. 2(1), pp. 1–9, 2014. [5] E.I. Unuabonah, K.O. Adebowale, B.I. Olu-Owolabi, and L.Z. Yang, “Comparison of sorption of Pb2 and Cd2 on Kaolinite clay and polyvinyl alcohol-modified Kaolinite clay,” Adsorpt., vol. 14, pp. 791–803, 2008. [6] A. Z. M. Badruddoza, Z. B. Z. Shawon, T. W. J. Daniel, K. Hidajat, and M. S. Uddin, “Fe3O4/cyclodextrin polymer nanocomposites for selective heavy metals removal from industrial wastewater,” Carbohyd. Polym., vol. 91, pp. 322–332, 2013. [7] A. G. Fane, R. Wang, and M. X. Hu, “Synthetic Membranes for Water Purification: Status and Future,” Angew. Chem. Int. Ed., vol. 54, pp. 3368–3386, 2015. [8] K. Yua, J. Ho, E. McCandlish, B. Buckleyb, R. Patelc, Z. Li, and N. C. Shapley, “Copper ion adsorption by chitosan nanoparticles and alginate microparticles for water purification applications,” Colloid. Surface. A, vol. 425, pp. 31–41, 2013. [9] M. A. Al-Anber, “Removal of high-level Fe3 from aqueous solution using natural inorganic materials: Bentonite (NB) and quartz (NQ),” Desalination, vol. 250, pp. 885–891, 2010. [10] A. Baghel, B. Singh, P. Pandey, R.K. Dhaked, A.K. Gupta, K. Ganeshan, and K. Sekhar, “Adsorptive removal of water poisons from contaminated water by adsorbents,” J. Hazard. Mater. B, vol. 137, pp. 396–400, 2006. [11] K. G. Bhattacharyya, and S. S. Gupta, “Adsorptive accumulation of Cd(II), Co(II), Cu(II), Pb(II), and Ni(II) from water on montmorillonite: Influence of acid activation,” J. Colloid Interf. Sci., vol. 310, pp. 411–424, 2007. [12] E. K. Putra, R. Pranowo, J. Sunarso, N. Indraswati, and S. Ismadji, “Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: Mechanisms, isotherms and kinetics,” water res., vol. 43, pp. 2419–2430, 2009. [13] H. Zheng, Y. Wang, Y. Zheng, H. Zhang, S. Liang, and M. Long, “Equilibrium, kinetic and thermodynamic studies on the sorption of 4-hydroxyphenol on Cr-bentonite,” Chem. Eng. J., vol. 143, pp. 117–123, 2008. [14] L. Zhi-rong, and Z. Shao-qi, “Adsorption of copper and nickel on Na-bentonite,” Process Saf. Environ., vol. 88, pp. 62–66, 2010. [15] L. Gu, J. Xu, L. Lv, B. Liu, H. Zhang, X. Yu, and Z. Luo, “Dissolved organic nitrogen (DON) adsorption by using Al-pillared bentonite,” Desalination, vol. 269, pp. 206–213, 2011. [16] J. Feng, X. Hu, and P. L. Yue, “Novel Bentonite Clay-Based Fe-Nanocomposite as a Heterogeneous Catalyst for Photo-Fenton Discoloration and Mineralization of Orange II,” Environ. Sci. Technol., vol. 38, pp. 269-275, 2004. [17] H. Rezala, H. Khalaf, J. L. Valverde, A. Romero, A. Molinari and A. Maldotti, “Photocatalysis with Ti-pillared clays for the oxofunctionalization of alkylaromatics by O2,” Appl. Catal. A: Gen., vol. 352, pp. 234–242, 2009. [18] X. Xiaofeng, and G. Lian “Effect of crystal structure on adsorption behaviors of nanosized TiO2 for heavy-metal cations,” Curr. Appl. Phys., vol. 9(3), pp. 185–188, 2009. [19] J. Li, C. Chen, J. Zhao, H. Zhu, and J. Orthman, “Photodegradation of dye pollutants on TiO2 nanoparticles dispersed in silicate under UV–VIS irradiation,” Appl. Catal. B: Environ., vol. 37, pp. 331–338, 2002. [20] M. Ishaq, S. Sultan, I. Ahmad, H. Ullah, M. Yaseen, and A. Amir, “Adsorptive desulfurization of model oil using untreated, acid activated and magnetite nanoparticle loaded bentonite as adsorbent,” J. Saudi Chem. Soc., vol. 21(2), pp. 143–151, 2017. [21] L.Z. Zhu, X.G. Ren, and S.B. Yu, “Use of cetyltrimethylammonium bromide-bentonite to remove organic contaminants of varying polar character from water,” Environ. Sci. Technol., vol. 32, pp. 3374–3378, 1998. [22] H. Gupta , and P. R. Gogate, “Intensified removal of copper from waste water using activated watermelon based biosorbent in the presence of ultrasound,” Ultrason. Sonochem., vol. 30, pp. 113–122, 2016. [23] M.A. Hossain, H.H. Ngo, W.S. Guo, and T.V. Nguyen, “Removal of copper form water by adsorption onto banana peel as biosorbent,” Int. J. Geomate, vol. 2, pp. 227–234, 2012. [24] V. Masindi, and W. M. Gitari, “Simultaneous removal of metal species from acidic aqueous solutions using cryptocrystalline magnesite/bentonite clay composite: an experimental and modelling approach,” J. Clean. Prod., vol. 112, 1077-1085, 2016. [25] Lalhmunsiama, S. M. Lee, and D. Tiwari, “Manganese oxide immobilized activated carbons in the remediation of aqueous wastes contaminated with copper (II) and lead (II),” Chem. Eng. J., 225, 128–137, 2013. [26] M. Vhahangwele, and G. W. Mugera, “The potential of ball-milled South African bentonite clay for attenuation of heavy metals from acidic wastewaters: Simultaneous sorption of Co2 , Cu2 , Ni2 , Pb2 , and Zn2 ions,” J. Environ. Chem. Eng., vol. 3, pp. 2416–2425, 2015. [27] D. Tiwari, Lalhmunsiama, and S. M. Lee, “Iron-impregnated activated carbons precursor to rice hulls and areca nut waste in the remediation of Cu(II) and Pb(II) contaminated waters: a physico-chemical studies,” Desalination and Water Treatment, 53, 6, 1591–1605, 2015.



فایل مقاله
تعداد بازدید: 805
تعداد دریافت فایل مقاله : 10