فهرست

بررسی نقش گروه عاملی کربوکسیلاتی بر عملکرد نانولوله‌های کربنی تک‌جداره در فرایند تشکیل هیدرات گاز طبیعی

نشریه: تابستان ۱۳۹۶ - مقاله 1   صفحات :  97 تا 107



کد مقاله:
nm-233

مولفین:
احمد قضاتلو: پژوهشگاه صنعت نفت - مرکز تحقیقات نانو
سیامک عظیمی ملکی: دانشکده مهندسی شیمی - دانشگاه ازاد اسلامس واحد ماهشهر


چکیده مقاله:

چکیده در این تحقیق فرایند تشکیل هیدرات گاز طبیعی در حضور نانولوله کربنی تک‌جداره خالص و عاملدار شده به منظور بررسی اثر عاملدار کردن نانوذرات مطالعه گردید. برای این منظور ابتدا گروه های عاملی کربوکسیلاتی طی فرایند اکسیداسیون در محیط اسیدی بر سطح نانولوله های کربنی پیوند خورده و وضعیت نانوساختاری و کریستالیتی آن توسط آنالیزهای XRD، FTIR، BET و تصاویر SEM بررسی شد. سپس نانوسیالات پایداری حاوی نانولوله کربنی تک‌جداره و عاملدار شده با غلظت 1 وزنی تهیه و در فرایند تشکیل هیدرات گازی در فشار psig 1000 و دمای 4 درجه سانتی گراد استفاده شد. نتایج حاصل نیز با دو نمونه شاهد حاوی آب خالص و مخلوط آب/سورفکتنت مقایسه شد. نتایج حاکی از آن است که گروه های عاملی کربوکسیلاتی با افزایش تخلخل در ساختار کربنی و ایجاد پایداری مناسب در سیال ضمن عدم نیاز به سورفکتنت دارای اثر مناسبی در زمان انحلال گاز، فرایند القا و نحوه رشد هیدرات گازی داشته و درنتیجه ضمن افزایش ظرفیت ذخیره سازی موجب پایداری بیشتر هیدرات تشکیل یافته می شوند. بطوریکه زمان فرایند انحلال را 6/72 و زمان فرایند القا را تا 9/78 کاهش داده و مقدار ذخیره سازی گاز را 6/69 افزایش داده است. همچنین مشاهده شد پایداری هیدرات تشکیل شده در حضور نانولوله کربنی تک‌جداره عاملدار شده 9/44 بیشتر از آب می باشد لذا استفاده از آن به عنوان راه کاری مناسب در راستای کاهش و رفع محدویت های موجود برای فرایند هیدرات پیشنهاد می شود.


Article's English abstract:

Abstract In this research, process of natural gas hydrate formation was studied in the presence of pure and functionalized single-walled carbon nanotubes to determine the effect of nanoparticles functionalization. For this purpose, first carboxylate functional groups linked on the surface of carbon nanotubes during the process of oxidation in acidic media. Then the structure of CNT was evaluated by XRD, FTIR, BET and SEM images. Then stable nanofluids prapred include 1 functionalized CNT and used in gas hydrate process at 1000 psig and 4°C. The results were compared with two blanks of water and water/surfactant. The results shown that Carboxylate groups have good effect on dissolution time, Induction time and growth of gas hydrate by increasing porosity of the carbon structure and creation of appropriate stability of fluid. So formed hydrates has more stability and high storage capacity. In fact, dissolution and time induction reduced to 72.9 and 78.9 respectivity than blank and storage capacity increased 69.6.It was also observed the stability of hydrate formation 44.9 increased in the presence of functionalized CNT. Therefore, it was recommended in order to reduce and eliminate existing constraints of hydrate process.


کلید واژگان:
گروه عاملي كربوكسيلاتي، هيدرات، نانولوله کربني تک‌جداره، عاملدار کردن، زمان القا، گاز طبيعي

English Keywords:
carboxylate functional groups, hydrates, single-walled carbon nanotubes, functionalization, induction time, natural gas

منابع:

English References:
[1] Bethune D.S., Kiang C.H., Devries M.S., Gorman G., Savoy R., Vazquez J., Beyers R., Cobalt-catalysed growth of carbon nanotubes with single-atomic-layerwalls, Nature, 363, 1993, pp. 605-607. [2] Iijima S., Ichihashi T., Single-shell carbon nanotubes of 1-nm diameter, Nature, 363, (1993), pp. 603-605. [3] Guo T., Nikolaev P., Thess A., Colbert D.T., Smalley R.E., Chem. Phys. Lett., 243, (1995), pp. 49. [4]Holister P., Harper T.E., The nanotechnology opportunity report II, CMP Cientificia, Ilkley, West Yorkshire, UK. [5] Hongjie D., Tom G., An Introduction To Carbon Nanotubes. Polymer Interfaces and Macromolecular Assemblies, (2003). [6] Collins Ph.G., Zettl A., Unique characteristics of cold cathode carbon-nanotube-matrix field emitters. Phys. Rev., (1997), pp. 9391-9399. [7] Saito R. , Dresselhaus G. , Dresselhaus M. S., Physical Properties of Carbon Nanotubes, IEEE Electrical Insulation Magazine, (1998). [8] George J.H., Shaffer M.M., Stevens M.M., Nanofibrous Materials for Tissue Engineering Investigating the Cellular Response to Multiwalled Carbon Nanotubes, Journal of Experimental Nanoscience, 1, (2006), pp.1. [9] S. Thomas, R.A. Dawe, Review of ways to transport natural gas energy from countries which do not need the gas for domestic use, Energy, 28, (2003), 1461-1477. [10] Gudmundsson J.S., Hveding F., A. Borrehaug, Transport of Natural Gas as Frozen Hydrate, 5th International Offshore and Polar Engineering Conference, Netherlands, (1995). [11] Gudmundsson J.S., Brrehaug A., Frozen Hydrate for Transport of Natural Gas, 2nd International Conference on Natural Gas Hydrate, Toulouse, (1996). [12] Miata K., Okui T., Hirayama H., Ihara M., A Challeng to High-rate Industrial Production of Methane Hydrate”, 4th international Conference on Gas Hydrates, Yokohama, (2002). [13] Zhong Y., Rogers R., Surfactant Effects on Gas Hydrate Formation, Chem. Eng. Sci., 55, (2000), pp.4177- 41 87 [14] Sun Z., Wang R., Ma R., Guo K., Fan S., Natural gas storage in hydrate with the presence of promoters, Energy Conversion and Management, 44, (2003), pp. 2733-2742. [15] Guo Y., Fan S., Guo K., Chen Y., Storage Capacity of Methane in Hydrate Using Calcium Hypochlorite as Additive, 4th international Conference on Gas Hydrates, Yokohama, (2002). [16] Sun Z G, Ma R S, Wang R Z, Guo K H, and Fan S S., Experimental studying of additives effects on gas storage in hydrate, Energy Flues, 17, (2003), pp.1180-1185 [17] Ganji H., Manteghian M., Rahimi Mofrad H., Effect of mixed compounds on methane hydrate formation and dissociation rates and storage capacity, Fuel Processing Technology, 88, (2007), pp. 891-895. [18] Lin W., Chen G.J., Sun C.Y., Guo X.Q., Wu Z.K., Liang M.Y., Effect of Surfactants on The Formation and Dissociation Behavior of Methane Hydrate, Chem. Eng. Sci., 59, (2004), pp.4449-4455. [19] Ganji H., Manteghian M., Sadaghiani K., Omidkhah M. R., Rahimi mofrad H., Effect of different surfactants on methane hydrate formation rate, stability and storage capacity, Fuel, 86, (2007), pp. 434-441. [20] Ganandran N, R. Amin, The Effect of Hydrotropes on Gas Hydrates Formation, J Petrol Sci. Eng., 40, (2003) pp.37-46 [21] Han X., S. Wang, X. Chen, F. Liu, Surfactant Accelerates Gas Hydrate Formation, 4th international Conference on Gas Hydrates, Yokohama, (2002). [22] Wen D., Ding Y., Effective thermal conductivity of aqueous suspensions of carbon nanotubes (carbon nanotube nanofluids), Thermophys. Heat Transfer, 18, 4, (2004), pp. 481–485. [23] Assael M.J., Metaxa I., Arvanitidis J., Christofilos D., Lioustas C., Thermal conductivity enhancement in aqueous suspensions of carbon multi-walled and double-walled nanotubes in the presence of two different dispersants, Int. J. Thermophys., 26, 3, 2005, pp. 647–664. [24] Ding Y., Alias H., Wen D., Williams R.A., Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids), Int. J. Heat Mass Transfer, 49, (2006), pp. 240–250. [25] Garg P., Alvarado J.L., Marsh Ch., Carlson T.A., Kessler D.A., Annamalai K., An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of multi-wall carbon nanotubebased aqueous nanofluids, Int. J. Heat Mass Transfer, 52, (2009), pp. 5090–5101. [26] Li J., Kleinstreuer C., Thermal performance of nanofluid flow in microchannels, International Journal of Heat and Fluid Flow, 29, (2008), pp. 1221–1232. [27] Chen L., Xie H., Surfactant-free nanofluids containing double- and single-walled carbon nanotubes functionalized by a wet-mechanochemical reaction, Thermochimica Acta, 497, (2010), pp. 67–71. [28] Rashidi A.M., Akbarnejad M.M., Khodadadi A.A., Mortazavi Y., Ahmadpourd A., Single-wall carbon nanotubes synthesized using organic additives to Co Mo catalysts supported on nanoporous MgO, Nanotechnology, 18 (31), (2007), 315605. [29] Ahmad Ghozatloo, Ali Morad Rashidi, Mojtaba Shariaty-Niasar, Effects of surface modification on the dispersion and thermal conductivity of CNT/water nanofluids, International Communications in Heat and Mass Transfer 54 (2014) 1–7 [30] Zhang H.B., Lin G.D., Zhou Z.H., Dong X., Chen T., Raman spectra of MWCNTs and MWCNT-based H2-adsorbing system, Carbon, 40, (2002), pp. 2429–2436 [31] Min Fu, Qingze Jiao, Yun Zhao and Hansheng Li, Vapor diffusion synthesis of CoFe2O4 hollow sphere/graphene composites as absorbing materials, Mater Chem A, 2, (2014), pp. 735-744. [32] Li C.C., Lin J.L., Huang S.J., Lee J.T., and Chen C.H., A new and acid exclusive method for dispersing carbon multi walled nanotubes in aqueous suspensions, Colloids Surf. A: Physicochem, Eng. Aspects, 297, (2007), pp.275-281. [33] Shaw Y.T, Kee S.L, Siti K.K, Wan Ramli W.D., Graphene production via electrochemical reduction of graphene oxide: Synthesis and characterization, Chemical Engineering Journal, 251, (2014), pp. 422–434. [34] Tessy T.B, Sundara R., Enhanced convective heat transfer using graphene dispersed nanofluids, Nanoscale Research letters, 6, (2011), pp. 289-298. [35] Xinwei W., Hongwei T., Yan Y., Huan W., Shumin W., Weitao Z., Yichun L., Reduced graphene oxide/CdS for efficiently photocatalystic degradation of methylene blue, Alloys and Compounds, 524, (2012), pp. 5–12. [36] Hontoria Lucas C., Lopez Peinado A.J., Lopez Gonzalez J.D., RojasCervantes M.L., Martin-Aranda R.M., Study Of Oxygen Containing Groups In A Series Of Graphite Oxides: Physical And Chemical Characterization, Carbon 33, 11, (1995), pp. 1585-1592. [37] Skinner L.B., Benchmark oxygen-oxygen pair-distribution function of ambient water from x-ray diffraction measurements with a wide Q-range, J. Chem. Phys, 138, (2013), Article number 074506. [38] Wikfeldt K.T., Oxygen-oxygen correlations in liquid water: addressing the discrepancy between diffraction and extended x-ray absorption fine-structure using a novel multiple-data set fitting technique, J. Chem. Phys., 132, (2010), Article number 104513. [39] Bergmann U., Nearest-neighbor oxygen distances in liquid water and ice observed by x-ray raman based extended x-ray absorption fine structure, J. Chem. Phys, 127, (2007), Article number 174504. [40] Kammeyer C.W., Whitman D.R., Quantum mechanical calculation of molecular radii. I. hydrides of elements of periodic groups Iv through Vii, Journal Of Chemical Physics, 56, (1972), pp. 4419-4421. [41] Hwang Y., Lee J.K., Lee C.H., Jung Y.M., Cheong S.I., Lee C.G., Ku B.C., Jang S.P., Stability and thermal conductivity characteristics of nanofluids, Thermochim. Acta, 455, (2007), pp. 70–74. [42] Jin H., Xianju W., Qiong L., Xueyi W., Yunjin Z., Liming L., Influence of pH on the stability characteristics of nanofluids in: symposium on photonics and optoelectronics, SOPO, (2009), pp. 1–4.



فایل مقاله
تعداد بازدید: 918
تعداد دریافت فایل مقاله : 40



طراحی پرتال (طراحی پورتال): آرانا نتورکطراحی پرتال (طراحی پورتال): آرانا نتورک