فهرست

تهیه نانو بلور‌های مغناطیسی SrFe12O19 و کاربرد آنها در حذف آلاینده‌های آلی

نشریه: سال سوم -شماره4- زمستان 1395 - مقاله 4   صفحات :  217 تا 222



کد مقاله:
nm-199

مولفین:
مرتضی افشار: دانشگاه تهران - دانشکده شیمی09191368251
علیرضا بدیعی
حامد اسکندرلو : دانشگاه تهران - دانشکده شیمی


چکیده مقاله:

نانو بلور‌های استرانسیوم هگزافریت به وسیله روش سل-ژل خود احتراقی و کلسینه شدن در دمای900 °C به مدت 1 ساعت در نسبت‌های مولی متفاوت از کاهنده/اکسنده تهیه شدند. خواص ساختاری نانو ذرات استرانسیوم هگزافریت به وسیله پراش پرتو ایکس XRD و میکروسکوپ الکترونی روبشی SEM مطالعه شد. نتایج نشان دادند که اندازه ذرات پودر به دست آمده حدود 50-80 nm است. فعالیت فوتوکاتالیستی استرانسیوم هگزافریت مغناطیسی تحت تابش نور ماورابنفش با استفاده از متیلن‌بلو به عنوان یک ترکیب مدل برای آلاینده‌های آلی مورد بررسی قرار گرفت. بیشترین بازده تخریب 54در نسبت کاهنده/اکسنده برابر با 0.8 به دست آمد. به دلیل میزان مغناطش بالا، نانو ذرات استرانسیوم هگزافریت پس از واکنش به سادگی با اعمال یک میدان مغناطیسی با قدرت کم از محیط جدا ‌شدند.


Article's English abstract:

Strontium hexaferrite nanocrystallites were prepared by the sol–gel autocombustion method followed by calcination at 900 °C for 1h under different molar ratios of reductant/oxidant. The structural properties of strontium hexaferrite nanoparticles were studied by X-ray diffraction XRD and scanning electron microscopy SEM. The results showed that the particle size of the resultant powder was about 50-80 nm. The photocatalytic activity of magnetic strontium hexaferrite under UV light was evaluated using Methylene blue MB as a model compound for organic contaminants. The maximum degradation efficiency 46 was achieved at molar ratio of reductant/oxidizer 0.8. Reasonably high values of magnetization, the strontium hexaferrite nanoparticles could be easily separated from the environment by using a low strength magnetic field after the reaction.


کلید واژگان:
استرانسیوم هگزافریت، سل-ژل خود احتراقی، فوتوکاتالیست مغناطیسی، متیلن‌بلو

English Keywords:
Strontium hexaferrite, sol–gel autocombustion, magnetic photocatalyst, methylene blue

منابع:

English References:
[1] C. Wang, C. Shao, Y. Liu, and X. Li, "Water? Dichloromethane Interface Controlled Synthesis of Hierarchical Rutile TiO2 Superstructures and Their Photocatalytic Properties," Inorg. Chem., vol. 48, pp. 1105-1113, 2009. [2] H. Eskandarloo and A. Badiei, "Fabrication of an inexpensive and high efficiency microphotoreactor using CO2 laser technique for photocatalytic water treatment applications," Environ. Technol., pp. 1-11, 2014. [3] Y. R. Smith, A. Kar, and V. Subramanian, "Investigation of physicochemical parameters that influence photocatalytic degradation of methyl orange over TiO2 nanotubes," Ind. Eng. Chem. Res., vol. 48, pp. 10268-10276, 2009. [4] H. Eskandarloo, A. Badiei, M. A. Behnajady, and G. M. Ziarani, "Minimization of electrical energy consumption in the photocatalytic reduction of Cr (VI) by using immobilized Mg, Ag co-impregnated TiO2 nanoparticles," RSC Adv., vol. 4, pp. 28587-28596, 2014. [5] M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, "Environmental applications of semiconductor photocatalysis," Chem. Rev., vol. 95, pp. 69-96, 1995. [6] P. K. Dutta, S. Pehkonen, V. K. Sharma, and A. K. Ray, "Photocatalytic oxidation of arsenic (III): evidence of hydroxyl radicals," Environ. Sci. Technol., vol. 39, pp. 1827-1834, 2005. [7] K. Nakata and A. Fujishima, "TiO2 photocatalysis: design and applications," J. Photochem. Photobiol., C, vol. 13, pp. 169-189, 2012. [8] K. Nakata, T. Ochiai, T. Murakami, and A. Fujishima, "Photoenergy conversion with TiO2 photocatalysis: new materials and recent applications," Electrochim. Acta, vol. 84, pp. 103-111, 2012. [9] R. C. Pullar, "Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics," Prog. Mater Sci., vol. 57, pp. 1191-1334, 2012. [10] L. B.-H. Kyung-Hee, "Lee Myong-Ji Univ. Preparation of Sr-Ferrite Powders by Hydrothermal," J. Korean Ceram. Soc., vol. 28, pp. 17-22, 1987. [11] W. Yongfei, L. Qiaoling, Z. Cunrui, and J. Hongxia, "Preparation and magnetic properties of different morphology nano-SrFe 12 O 19 particles prepared by sol–gel method," J. Alloys Compd., vol. 467, pp. 284-287, 2009. [12] S. Masoudpanah and S. S. Ebrahimi, "Synthesis and characterization of nanostructured strontium hexaferrite thin films by the sol–gel method," J. Magn. Magn. Mater., vol. 324, pp. 2239-2244, 2012. [13] M. J. Iqbal, M. N. Ashiq, and I. H. Gul, "Physical, electrical and dielectric properties of Ca-substituted strontium hexaferrite (SrFe12O19) nanoparticles synthesized by co-precipitation method," J. Magn. Magn. Mater., vol. 322, pp. 1720-1726, 2010. [14] Z.-B. Guo, W.-P. Ding, W. Zhong, J.-R. Zhang, and Y.-W. Du, "Preparation and magnetic properties of SrFe12O19 particles prepared by the salt-melt method," J. Magn. Magn. Mater., vol. 175, pp. 333-336, 1997. [15] S. Alamolhoda, S. S. Ebrahimi, and A. Badiei, "Optimization of the Fe/Sr Ratio in Processing of Ultra-Fine Strontium Hexaferrite Powders by a Sol-Gel Auto-combustion Method in the Presence of Trimethylamine," Iranian Int. J. Sci., vol. 5, pp. 173-179, 2004. [16] S. Alamolhoda, S. S. Ebrahimi, and A. Badiei, "A study on the formation of strontium hexaferrite nanopowder by a sol–gel auto-combustion method in the presence of surfactant," J. Magn. Magn. Mater., vol. 303, pp. 69-72, 2006. [17] A. C. F. Costa, M. R. Morelli, and R. H. Kiminami, "Combustion synthesis: effect of urea on the reaction and characteristics of Ni-Zn ferrite powders," J. Mater. Synth. Process., vol. 9, pp. 347-352, 2001. [18] J. Qiu, L. Liang, and M. Gu, "Nanocrystalline structure and magnetic properties of barium ferrite particles prepared via glycine as a fuel," Mater. Sci. Eng., A, vol. 393, pp. 361-365, 2005. [19] J. Azadmanjiri, S. S. Ebrahimi, and H. Salehani, "Magnetic properties of nanosize NiFe2O4 particles synthesized by sol–gel auto combustion method," Ceram. Int., vol. 33, pp. 1623-1625, 2007. [20] H. Xue, Z. Li, X. Wang, and X. Fu, "Facile synthesis of nanocrystalline zinc ferrite via a self-propagating combustion method," Mater. Lett., vol. 61, pp. 347-350, 2007. [21] H. Zhou, Y. Qu, T. Zeid, and X. Duan, "Towards highly efficient photocatalysts using semiconductor nanoarchitectures," Energy Environ. Sci., vol. 5, pp. 6732-6743, 2012.



فایل مقاله
تعداد بازدید: 272
تعداد دریافت فایل مقاله : 15



طراحی پرتال (طراحی پورتال): آرانا نتورکطراحی پرتال (طراحی پورتال): آرانا نتورک