فهرست

سنتز، شناسایی و کاربرد کمپلکس نیکل تثبیت شده برروی نانو حفرات MCM-41 بعنوان نانوکاتالیزگر قابل بازیافت و موثر برای اکسایش سولفیدها و تیولها

نشریه: پاییز ۱۳۹۷ - مقاله 10   صفحات :  273 تا 286



کد مقاله:
nm-188

مولفین:
محسن نیکورزم
آرش قربانی چقامارانی: دانشگاه ایلام - شیمی
مریم خانمرادی: دانشگاه ایلام - شیمی


چکیده مقاله:

در این پژوهش، کمپلکس باز-شیف نیکل نشانده شده بر روی نانو حفرات MCM-41 حاوی 4-هیدروکسی-3-متوکسی بنزآلدهید وانیلین تهیه و با استفاده از روش های پراش پرتوایکس XRD، طیف سنجی تبدیل فوریه مادون قرمز FT-IR، آنالیز وزن سنجی حرارتی TGA ، میکروسکوپ الکترونی روبشی SEM، طیف سنجی پلاسمای جفت شده القایی ICP-OES و طیف سنجی پراش انرژی پرتو EDX شناسایی شد. اکسایش انتخابی سولفید¬ها تحت شرایط بدون حلال وجفت شدن اکسایشی تیول¬ها در اتانول با استفاده از هیدروژن پراکسید به عنوان اکسید کننده سبز در حضور Ni-Vanillin-MCM-41به عنوان کاتالیز¬گر در دمای اتاق به طور موفقیت آمیزی انجام گرفت. این کاتالیز¬گر ناهمگن بسیار فعال بوده و می¬تواند برای چندین بار، بدون کاهش چشمگیری در فعالیت کاتالیز_گری آن، بازیافت شود. برخی از مزایای این کار شامل: جداسازی آسان، شرایط ملایم، بازده بالا و کاتالیز¬گر ارزان و غیر سمی می¬باشد.


Article's English abstract:

In this study a nickel-vanillin Schiff base complex has been synthesized via immobilization of nickel metal ion on mesoporous silica MCM-41 containing 4-hydroxy-3-methoxy benzaldehyde vanillin and characterized by X-ray diffraction XRD, Fourier transform infrared spectroscopy FTIR, thermogravimetric analysis TGA, scanning electron microscopy SEM, inductively coupled plasma atomic emission spectroscopy ICP-OES and X-ray diffraction spectroscopy EDX. Selective oxidation of sulfides under solvent free conditions and oxidative coupling of thiols in ethanol were successfully performed by employing hydrogen peroxide as a green oxidant in the presence of Ni-Vanillin-MCM-41 as catalyst at room temperature. This heterogeneous catalyst was a very active and could be recovered for several times without significant loss of its catalytic activity. Several advantages of this work are containing: the simple work up, mild conditions, excellent yield, inexpensive and non-toxic catalyst.


کلید واژگان:
نانو حفرات MCM-41، سولفید، دی¬سولفید، هیدروژن پراکسید، 4-هیدروکسی-3-متوکسی بنزآلدهید

English Keywords:
MCM-41, Sulfoxide, Disulfide, Hydrogen peroxide, 4-Hydroxy-3-methoxybenzaldehyde

منابع:
[1] U. Laska, C.G. Frost, G.J. Price, P.K. Plucinski, "Easy-separable magnetic nanoparticle-supported Pd catalysts: Kinetics, stability and catalyst re-use,” Journal of Catalysis, 268, 318-328, 2009. [2] P T. Anastas, M. M Kirchhoff, T. C. Williamson, “Catalysis as a foundational pillar of green chemistry,” Applied Catalysis A: General, 221, 3-13, 2001. [3] A. F. Littke, G. C. Fu, “Palladium-Catalyzed Coupling Reactions of Aryl Chlorides” Angewandte Chemie International Edition, 41, 4176-4211, 2002. [4] J. Beck, J. Vartuli, W. Roth, M. Leonowicz, C. Kresge, K. Schmitt, C. Chu, D. Olson, E. Sheppard, S. McCullen, J. Higgins, J. Schlenker, “A new family of mesoporous molecular sieves prepared with liquid crystal templates,” Journal of the American Chemical Society, 114, 10834-10843, 1992. [5] N. Marın-Astorga, G. Pecchi, J.L.G. Fierro, P. Reyes, “A comparative study of Pd supported on MCM-41 and SiO2 in the liquid phase hydrogenation of phenyl alkyl acetylenes mixtures,” Journal of Molecular Catalysis A: Chemical, 231, 67-74, 2005. [6] A. Ghorbani-Choghamarani, F. Nikpour, F. Ghorbani, F. Havasi, “Anchoring of Pd(II) complex in functionalized MCM-41 as an efficient and recoverable novel nanocatalyst in C–C, C–O and C–N coupling reactions using Ph3SnCl,” Royal Society of Chemistry, 5, 33212–33220, 2015. [7] A. Ghorbani-Choghamarani, F. Nikpour, F. Ghorbani, F. Havasi, “Pd-grafted functionalized mesoporous MCM-41: a novel, green and heterogeneous nanocatalyst for the selective synthesis of phenols and anilines from aryl halides in water,” New Journal of Chemistry, 39, 6504-6512, 2015. [8] S. K. Chiou, N. Hoa, A. Hodges, “Sulindac sulfide induces autophagic death in gastric epithelial cells via Survivin down-regulation: A mechanism of NSAIDs-induced gastric injury,” Biochemical Pharmacology, 81, 1317-1323, 2011. [9] A. A. Salama, M. Aboulaila, M. A. Terkawi, A. Mousa, A. El-Sify, M. Allaam, A. Zaghawa, N. Yokoyama, I. Igarashi, “Inhibitory effect of allicin on the growth of Babesia and Theileria equi parasites,” Parasitology Research, 113, 275-283, 2014. [10] Y. Kon, T. Yokoi, M. Yoshioka, S. Tanaka, Y. Uesaka, T. Mochizuki, K. Sato, T. Tatsumi, “Selective hydrogen peroxide oxidation of sulfides to sulfoxides or sulfones with MWW-type titanosilicate zeolite catalyst under organic solvent-free conditions,” Tetrahedron, 70, 7584-7592, 2014. [11] A. Rostami, J. Akradi, “A highly efficient, green, rapid, and chemoselective oxidation of sulfides using hydrogen peroxide and boric acid as the catalyst under solvent-free conditions,” Tetrahedron Letters, 51, 3501-3503, 2010. [12] M. A. Zolfigol, A. Khazaei, M. Safaiee, M. Mokhlesi, R. Rostamian, M. Bagheri, M. Shiri. H. G. Kruger, “Application of silica vanadic acid as a heterogeneous, selective and highly reusable catalyst for oxidation of sulfides at room temperature,” Journal of Molecular Catalysis A: Chemical, 370, 80-86, 2013. [13] A. Bayat, M. Shakourian-Fard, M. Mahmoodi Hashem, “Selective oxidation of sulfides to sulfoxides by a molybdate-based catalyst using 30% hydrogen peroxide,” Catalysis Communications, 52, 16-21, 2014. [14] D. Habibi, M. A. Zolfigol, M. Safaiee, A. Shamsian, A. Ghorbani-Choghamarani, “Catalytic oxidation of sulfides to sulfoxides using sodium perborate and/or sodium percarbonate and silica sulfuric acid in the presence of KBr,” Catalysis Communications, 10, 1257-1260, 2009. [15] B. R. Raju, S. Sarkar, U. C. Reddy, A. K. Saikia, “Cerium (IV) triflate-catalyzed selective oxidation of sulfides to sulfoxides with aqueous hydrogen peroxide,” Journal of Molecular Catalysis A: Chemical, 308, 169-173, 2009. [16] P. G. Romanelli, P. I. Villabrille, C. V. Cáceres, P. G. Vázquez, P. Tundo, “Keggin heteropolycompounds as catalysts for liquid-phase oxidation of sulfides to sulfoxides/sulfones by hydrogen peroxide,” Catalysis Communications, 12, 726-730, 2011. [17] M. A. Zolfigol, K. Amani, A. Ghorbani-Choghamarani, M. Hajjami, R. Ayazi-Nasrabadi, S. Jafari, “Chemo and homoselective catalytic oxidation of sulfides to sulfoxides with supported nitric acid on silica gel and poly vinyl pyrrolidone (PVP) catalyzed by KBr and/or NaBr,” Catalysis Communications, 9, 1739-1744, 2008. [18] A. Ghorbani-Choghamarani, S. Sardari, “Catalytic Oxidation of Sulfides to Sulfoxides by Poly(4-vinyl pyridinium nitrate), Silica Sulfuric Acid and Ammonium Bromide as a Catalyst,” Chinese Journal of Catalysis, 31, 1347-1350, 2010. [19] A. Dhakshinamoorthy, M. Alvaro, H. Garcia, Chemical Communications, 466-476, 2010. [20] R. Hajipour, S. E. Mallakpour, H. Adibi, “Selective and Efficient Oxidation of Sulfides and Thiols with Benzyltriphenylphosphonium Peroxymonosulfate in Aprotic Solvent,” The Journal of Organic Chemistry, 67, 8666-8668, 2002. [21] M. Kirihara, Y. Asai, S. Ogawa, T. Noguchi, A. Hatano, Y. Hirai, “A Mild and Environmentally Benign Oxidation of Thiols to Disulfides,” Synthesis, 21, 3286-3289, 2007. [22] A. Saxena, A. Kumar, S. Mozumdar, “Ni-nanoparticles: An efficient green catalyst for chemo-selective oxidative coupling of thiols,” Journal of Molecular Catalysis A: Chemical, 269, 35-40, 2007. [23] A. C. Silveira, S. R. Mendes, “Catalytic oxidation of thiols to disulfides using iodine and CeCl3·7H2O in graphite,” Tetrahedron Letters, 48, 7469-7471, 2007. [24] F.P. Ballistreri, G.A. Tomaselli, R.M. Toscano, “Selective and mild oxidation of thiols to sulfonic acids by hydrogen peroxide catalyzed by methyltrioxorhenium,” Tetrahedron Letters, 49, 3291-3293, 2008. [25] B. Karami, M. Montazerozohori, “Urea- Hydrogen Peroxide (UHP) Oxidation of Thiols to the Corresponding Disulfides Promoted by Maleic Anhydride as Mediator,” Molecules, 10, 1358-1363, 2005. [26] M. B. Fugu, N. P. Ndahi, B. B. Paul, A. N. Mustapha, “Synthesis, characterization, and antimicrobial studies of some vanillin Schiff base metal (II) complexes,” Journal of Chemical and Pharmaceutical Research, 5, 22-28, 2013. [27] A. Ghorbani-Choghamarani, Z. Darvishnejad, B. Tahmasbi, “Schiff base complexes of Ni, Co, Cr, Cd and Zn supported on magnetic nanoparticles: As efficient and recyclable catalysts for the oxidation of sulfides and oxidative coupling of thiols,” Inorganica Chimica Acta, 435, 223-231, 2015. [28] G. W. Wagner, Y. C. Yang, “Rapid Nucleophilic/Oxidative Decontamination of Chemical Warfare Agents,” Industrial

English References:
[1] U. Laska, C.G. Frost, G.J. Price, P.K. Plucinski, "Easy-separable magnetic nanoparticle-supported Pd catalysts: Kinetics, stability and catalyst re-use,” Journal of Catalysis, 268, 318-328, 2009. [2] P T. Anastas, M. M Kirchhoff, T. C. Williamson, “Catalysis as a foundational pillar of green chemistry,” Applied Catalysis A: General, 221, 3-13, 2001. [3] A. F. Littke, G. C. Fu, “Palladium-Catalyzed Coupling Reactions of Aryl Chlorides” Angewandte Chemie International Edition, 41, 4176-4211, 2002. [4] J. Beck, J. Vartuli, W. Roth, M. Leonowicz, C. Kresge, K. Schmitt, C. Chu, D. Olson, E. Sheppard, S. McCullen, J. Higgins, J. Schlenker, “A new family of mesoporous molecular sieves prepared with liquid crystal templates,” Journal of the American Chemical Society, 114, 10834-10843, 1992. [5] N. Mar?n-Astorga, G. Pecchi, J.L.G. Fierro, P. Reyes, “A comparative study of Pd supported on MCM-41 and SiO2 in the liquid phase hydrogenation of phenyl alkyl acetylenes mixtures,” Journal of Molecular Catalysis A: Chemical, 231, 67-74, 2005. [6] A. Ghorbani-Choghamarani, F. Nikpour, F. Ghorbani, F. Havasi, “Anchoring of Pd(II) complex in functionalized MCM-41 as an efficient and recoverable novel nanocatalyst in C–C, C–O and C–N coupling reactions using Ph3SnCl,” Royal Society of Chemistry, 5, 33212–33220, 2015. [7] A. Ghorbani-Choghamarani, F. Nikpour, F. Ghorbani, F. Havasi, “Pd-grafted functionalized mesoporous MCM-41: a novel, green and heterogeneous nanocatalyst for the selective synthesis of phenols and anilines from aryl halides in water,” New Journal of Chemistry, 39, 6504-6512, 2015. [8] S. K. Chiou, N. Hoa, A. Hodges, “Sulindac sulfide induces autophagic death in gastric epithelial cells via Survivin down-regulation: A mechanism of NSAIDs-induced gastric injury,” Biochemical Pharmacology, 81, 1317-1323, 2011. [9] A. A. Salama, M. Aboulaila, M. A. Terkawi, A. Mousa, A. El-Sify, M. Allaam, A. Zaghawa, N. Yokoyama, I. Igarashi, “Inhibitory effect of allicin on the growth of Babesia and Theileria equi parasites,” Parasitology Research, 113, 275-283, 2014. [10] Y. Kon, T. Yokoi, M. Yoshioka, S. Tanaka, Y. Uesaka, T. Mochizuki, K. Sato, T. Tatsumi, “Selective hydrogen peroxide oxidation of sulfides to sulfoxides or sulfones with MWW-type titanosilicate zeolite catalyst under organic solvent-free conditions,” Tetrahedron, 70, 7584-7592, 2014. [11] A. Rostami, J. Akradi, “A highly efficient, green, rapid, and chemoselective oxidation of sulfides using hydrogen peroxide and boric acid as the catalyst under solvent-free conditions,” Tetrahedron Letters, 51, 3501-3503, 2010. [12] M. A. Zolfigol, A. Khazaei, M. Safaiee, M. Mokhlesi, R. Rostamian, M. Bagheri, M. Shiri. H. G. Kruger, “Application of silica vanadic acid as a heterogeneous, selective and highly reusable catalyst for oxidation of sulfides at room temperature,” Journal of Molecular Catalysis A: Chemical, 370, 80-86, 2013. [13] A. Bayat, M. Shakourian-Fard, M. Mahmoodi Hashem, “Selective oxidation of sulfides to sulfoxides by a molybdate-based catalyst using 30% hydrogen peroxide,” Catalysis Communications, 52, 16-21, 2014. [14] D. Habibi, M. A. Zolfigol, M. Safaiee, A. Shamsian, A. Ghorbani-Choghamarani, “Catalytic oxidation of sulfides to sulfoxides using sodium perborate and/or sodium percarbonate and silica sulfuric acid in the presence of KBr,” Catalysis Communications, 10, 1257-1260, 2009. [15] B. R. Raju, S. Sarkar, U. C. Reddy, A. K. Saikia, “Cerium (IV) triflate-catalyzed selective oxidation of sulfides to sulfoxides with aqueous hydrogen peroxide,” Journal of Molecular Catalysis A: Chemical, 308, 169-173, 2009. [16] P. G. Romanelli, P. I. Villabrille, C. V. C?ceres, P. G. V?zquez, P. Tundo, “Keggin heteropolycompounds as catalysts for liquid-phase oxidation of sulfides to sulfoxides/sulfones by hydrogen peroxide,” Catalysis Communications, 12, 726-730, 2011. [17] M. A. Zolfigol, K. Amani, A. Ghorbani-Choghamarani, M. Hajjami, R. Ayazi-Nasrabadi, S. Jafari, “Chemo and homoselective catalytic oxidation of sulfides to sulfoxides with supported nitric acid on silica gel and poly vinyl pyrrolidone (PVP) catalyzed by KBr and/or NaBr,” Catalysis Communications, 9, 1739-1744, 2008. [18] A. Ghorbani-Choghamarani, S. Sardari, “Catalytic Oxidation of Sulfides to Sulfoxides by Poly(4-vinyl pyridinium nitrate), Silica Sulfuric Acid and Ammonium Bromide as a Catalyst,” Chinese Journal of Catalysis, 31, 1347-1350, 2010. [19] A. Dhakshinamoorthy, M. Alvaro, H. Garcia, Chemical Communications, 466-476, 2010. [20] R. Hajipour, S. E. Mallakpour, H. Adibi, “Selective and Efficient Oxidation of Sulfides and Thiols with Benzyltriphenylphosphonium Peroxymonosulfate in Aprotic Solvent,” The Journal of Organic Chemistry, 67, 8666-8668, 2002. [21] M. Kirihara, Y. Asai, S. Ogawa, T. Noguchi, A. Hatano, Y. Hirai, “A Mild and Environmentally Benign Oxidation of Thiols to Disulfides,” Synthesis, 21, 3286-3289, 2007. [22] A. Saxena, A. Kumar, S. Mozumdar, “Ni-nanoparticles: An efficient green catalyst for chemo-selective oxidative coupling of thiols,” Journal of Molecular Catalysis A: Chemical, 269, 35-40, 2007. [23] A. C. Silveira, S. R. Mendes, “Catalytic oxidation of thiols to disulfides using iodine and CeCl3·7H2O in graphite,” Tetrahedron Letters, 48, 7469-7471, 2007. [24] F.P. Ballistreri, G.A. Tomaselli, R.M. Toscano, “Selective and mild oxidation of thiols to sulfonic acids by hydrogen peroxide catalyzed by methyltrioxorhenium,” Tetrahedron Letters, 49, 3291-3293, 2008. [25] B. Karami, M. Montazerozohori, “Urea- Hydrogen Peroxide (UHP) Oxidation of Thiols to the Corresponding Disulfides Promoted by Maleic Anhydride as Mediator,” Molecules, 10, 1358-1363, 2005. [26] M. B. Fugu, N. P. Ndahi, B. B. Paul, A. N. Mustapha, “Synthesis, characterization, and antimicrobial studies of some vanillin Schiff base metal (II) complexes,” Journal of Chemical and Pharmaceutical Research, 5, 22-28, 2013. [27] A. Ghorbani-Choghamarani, Z. Darvishnejad, B. Tahmasbi, “Schiff base complexes of Ni, Co, Cr, Cd and Zn supported on magnetic nanoparticles: As efficient and recyclable catalysts for the oxidation of sulfides and oxidative coupling of thiols,” Inorganica Chimica Acta, 435, 223-231, 2015. [28] G. W. Wagner, Y. C. Yang, “Rapid Nucleophilic/Oxidative Decontamination of Chemical Warfare Agents,” Industrial



فایل مقاله
تعداد بازدید: 150
تعداد دریافت فایل مقاله : 16



طراحی پرتال (طراحی پورتال): آرانا نتورکطراحی پرتال (طراحی پورتال): آرانا نتورک