فهرست

تاثیر نسبت گلیسرول به نیترات روی سنتز احتراقی مایکروویو نانوکامپوزیت CuO-ZnO-Al2O3 جهت استفاده در تولید هیدروژن از متانول

نشریه: سال سوم -شماره1- بهار 1395 - مقاله 4   صفحات :  27 تا 38



کد مقاله:
nm-179

مولفین:
حسین عجمین: سازمان جهاد دانشگاهی یزد - گروه سرامیک های صنعتی
محمد حقیقی


چکیده مقاله:

در دهه های اخیر استفاده از هیدروژن به عنوان یک حامل انرژی پاک به دلیل مشکلات زیست محیطی سوخت های فسیلی بسیار مورد توجه قرار گرفته است. به منظور تولید درجای هیدروژن از متانول به عنوان روشی کاربردی جهت تامین خوراک پیل های سوختی وسایل نقلیه، در این مقاله از نانوکامپوزیت های CuO-ZnO-Al2O3 استفاده گردیده است. این نانوکامپوزیت ها به روش سریع و ساده سنتز احتراقی با مایکروویو سنتز شده¬اند. با توجه به اینکه نسبت سوخت به نیترات از جمله پارامترهای تاثیرگذار بر کیفیت نانوکامپوزیت تولیدی می باشد، اثر نسبت گلیسرول به نیترات در این تحقیق مورد بررسی قرار گرفته است. جهت تعیین خصوصیات فیزیکی شیمیایی نانوکامپوزیت های سنتزی از آنالیزهای XRD، FESEM، FTIR، EDX و BET استفاده شده است. نتایج این آنالیزها نشان می دهد که افزایش این نسبت موجب کاهش بلورینگی اکسید روی می گردد. همچنین تغییر این نسبت موجب ایجاد یک مقدار بهینه از لحاظ پراکندگی فاز فعال و مساحت سطح می گردد. نتایج ارزیابی راکتوری نیز اثبات کرد افزایش نسبت گلیسرول به نیترات دارای یک مقدار بهینه از لحاظ درصد تبدیل متانول می باشد که این مقدار 2 می باشد. در نتیجه نانوکامپوزیت CZAG/N2 به دلیل مساحت سطح و پراکندگی فاز فعال بیشتر دارای تبدیل متانول بالاتری است. همچنین نتایج پایداری این نمونه در مدت 1440 دقیقه نشان می دهد که تغییر محسوسی در میزان تبدیل و گزینش پذیری محصولات حاصل نمی شود.


Article's English abstract:

In recent decades, the utilization of hydrogen as a clean energy carrier due to environmental problems of fossil fuels is highly regarded. In order to produce on-board hydrogen from methanol as an effective method for applying feed of fuel cell vehicles, in this paper CuO-ZnO-Al2O3 nanocomposites are used. These nanocomposites were synthesized by the fast and simple microwave assisted combustion method. Considering that the fuel/nitrates ratio is one of the effective parameters on quality of the prepared nanocomposite, the effect of glycerol to nitrates ration were investigated in this study. XRD, FESEM, FTIR, EDX, and BET analyses were used to determine the physicochemical properties of fabricated nanocomposites. These analyses suggested that increasing of this ratio led to decrease of zinc oxide crystallinity. Also the change of this ratio resulted an optimum of active phase dispersion and surface area. The catalytic experiments results proved that enhancement of glycerol/nitrates ratio to methanol conversion have an optimum value which is 2. As a result, the CZAG/N2 due to higher surface area and dispersion of active phase has higher methanol conversion. Also, the stability results of this sample for 1440 minutes showed that no significant change in methanol conversion and products selectivity.


کلید واژگان:
نانوکامپوزیت CuO-ZnO-Al2O3، سنتز احتراقی مایکروویو، نسبت گلیسرول به نیترات، متانول، هیدروژن.

English Keywords:
CuO-ZnO-Al2O3 Nanocomposite, Microwave Assisted Combustion, Glycerol/Nitrates Ratio, Methanol, Hydrogen.

منابع:
-

English References:
[1] J. Kim, T. Kim, "Compact PEM fuel cell system combined with all-in-one hydrogen generator using chemical hydride as a hydrogen source", Applied Energy, vol. 160, pp. 945-953, 2015. [2] D. McLarty, J. Brouwer, C. Ainscough, "Economic analysis of fuel cell installations at commercial buildings including regional pricing and complementary technologies", Energy and Buildings, vol. 113, pp. 112-122, 2016. [3] F. L. S. Carvalho, Y. J. O. Asencios, J. D. A. Bellido, E. M. Assaf, "Bio-ethanol steam reforming for hydrogen production over Co3O4/CeO2 catalysts synthesized by one-step polymerization method", Fuel Processing Technology, vol. 142, pp. 182-191, 2016. [4] R. Shokrani, M. Haghighi, N. Jodeiri, H. Ajamein, M. Abdollahifar, "Fuel cell grade hydrogen production via methanol steam reforming over CuO/ZnO/Al2O3 nanocatalyst with various oxide ratios synthesized via urea-nitrates combustion method", International Journal of Hydrogen Energy, vol. 39, no. 25, pp. 13141-13155, 2014. [5] R. Khoshbin, M. Haghighi, N. Asgari, "Direct synthesis of dimethyl ether on the admixed nanocatalystsof CuO-ZnO-Al2O3 and HNO3-modified clinoptilolite at high pressures: Surface properties and catalytic performance", Materials Research Bulletin, vol. 48, no. 2, pp. 767-777, 2013. [6] E. Y. Mironova, A. A. Lytkina, M. M. Ermilova, M. N. Efimov, L. M. Zemtsov, N. V. Orekhova, G. P. Karpacheva, G. N. Bondarenko, D. N. Muraviev, A. B. Yaroslavtsev, "Ethanol and methanol steam reforming on transition metal catalysts supported on detonation synthesis nanodiamonds for hydrogen production", International Journal of Hydrogen Energy, vol. 40, no. 8, pp. 3557-3565, 2015. [7] J. Baneshi, M. Haghighi, N. Jodeiri, M. Abdollahifar, H. Ajamein, "Homogeneous precipitation synthesis of CuO-ZrO2-CeO2-Al2O3 nanocatalyst used in hydrogen production via methanol steam reforming for fuel cell applications", Energy Conversion and Management, vol. 87, pp. 928-937, 2014. [8] D. Das, J. Llorca, M. Dominguez, S. Colussi, A. Trovarelli, A. Gayen, "Methanol steam reforming behavior of copper impregnated over CeO2-ZrO2 derived from a surfactant assisted coprecipitation route", International Journal of Hydrogen Energy, vol. 40, no. 33, pp. 10463-10479, 2015. [9] Y. Matsumura, "Stabilization of Cu/ZnO/ZrO2 catalyst for methanol steam reforming to hydrogen by coprecipitation on zirconia support", Journal of Power Sources, vol. 238, pp. 109-116, 2013. [10] L. Zhang, L. Pan, C. Ni, T. Sun, S. Zhao, S. Wang, A. Wang, Y. Hu, "CeO2-ZrO2-promoted CuO/ZnO catalyst for methanol steam reforming", International Journal of Hydrogen Energy, vol. 38, no. 11, pp. 4397-4406, 2013. [11] G. Fierro, M. Lo Jacono, M. Inversi, P. Porta, F. Cioci, R. Lavecchia, "Study of the reducibility of copper in CuO-ZnO catalysts by temperature-programmed reduction", Applied Catalysis A: General, vol. 137, no. 2, pp. 327-348, 1996. [12] M. Behrens, "Coprecipitation: An excellent tool for the synthesis of supported metal catalysts - From the understanding of the well-known recipes to new materials", Catalysis Today, vol. 246, pp. 46-54, 2015. [13] S. T. Aruna, A. S. Mukasyan, "Combustion synthesis and nanomaterials", Current Opinion in Solid State and Materials Science, vol. 12, no. 3-4, pp. 44-50, 2008. [14] F.-t. Li, Y. Zhao, Y. Liu, Y.-j. Hao, R.-h. Liu, D.-s. Zhao, "Solution combustion synthesis and visible light-induced photocatalytic activity of mixed amorphous and crystalline MgAl2O4 nanopowders", Chemical Engineering Journal, vol. 173, no. 3, pp. 750-759, 2011. [15] G. Liu, J. Li, K. Chen, "Combustion synthesis of refractory and hard materials: A review", International Journal of Refractory Metals and Hard Materials, vol. 39, pp. 90-102, 2013. [16] A. S. Mukasyan, A. S. Rogachev, S. T. Aruna, "Combustion synthesis in nanostructured reactive systems", Advanced Powder Technology, vol. 26, no. 3, pp. 954-976, 2015. [17] S. L. González-Cortés, F. E. Imbert, "Fundamentals, properties and applications of solid catalysts prepared by solution combustion synthesis (SCS)", Applied Catalysis A: General, vol. 452, pp. 117-131, 2013. [18] N. Srinatha, V. Dinesh Kumar, K. G. M. Nair, B. Angadi, "The effect of fuel and fuel-oxidizer combinations on ZnO nanoparticles synthesized by solution combustion technique", Advanced Powder Technology, vol. 26, no. 5, pp. 1355-1363, 2015. [19] P. Scherrer, "Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen", Nachrichten von der Gesellschaft der Wissenschaften zu Gottingen, vol. 26, pp. 98-100, 1918. [20] S. Allahyari, M. Haghighi, A. Ebadi, "Direct synthesis of DME over nanostructured CuO-ZnO-Al2O3/HZSM-5 catalyst washcoated on high pressure microreactor: Effect of catalyst loading and process condition on reactor performance", Chemical Engineering Journal, vol. 262, pp. 1175-1186, 2015. [21] J. Baneshi, M. Haghighi, N. Jodeiri, M. Abdollahifar, H. Ajamein, "Urea-nitrate combustion synthesis of ZrO2 and CeO2 doped CuO/Al2O3 nanocatalyst used in steam reforming of biomethanol for hydrogen production", Ceramics International, vol. 40, no. 9, Part A, pp. 14177-14184, 2014. [22] C. Mateos-Pedrero, H. Silva, D. A. Pacheco Tanaka, S. Liguori, A. Iulianelli, A. Basile, A. Mendes, "CuO/ZnO catalysts for methanol steam reforming: The role of the support polarity ratio and surface area", Applied Catalysis B: Environmental, vol. 174-175, pp. 67-76, 2015. [23] S. Lin, R. S. Johnson, G. K. Smith, D. Xie, H. Guo, "Pathways for methanol steam reforming involving adsorbed formaldehyde and hydroxyl intermediates on Cu(111): density functional theory studies", Physical Chemistry Chemical Physics, vol. 13, no. 20, pp. 9622-9631, 2011. [24] X. Li, K. H. Lim, "DFT Study of Steam Reforming of Formaldehyde on Cu, PdZn, and Ir", ChemCatChem, vol. 4, no. 9, pp. 1311-1320, 2012. [25] S. Saedy, M. Haghighi, M. Amirkhosrow, "Hydrothermal synthesis and physicochemical characterization of CuO/ZnO/Al2O3 nanopowder. Part I: Effect of crystallization time", Particuology, vol. 10, no. 6, pp. 729-736, 2012. [26] S. Allahyari, M. Haghighi, A. Ebadi, S. Hosseinzadeh, "Effect of irradiation power and time on ultrasound assisted co-precipitation of nanostructured CuO-ZnO-Al2O3 over HZSM-5 used for direct conversion of syngas to DME as a green fuel", Energy Conversion and Management, vol. 83, pp. 212-222, 2014. [27] S. R. Yahyavi, M. Haghighi, S. Shafiei, M. Abdollahifar, F. Rahmani, "Ultrasound-Assisted Synthesis and Physicochemical Characterization of Ni-Co/Al2O3-MgO Nanocatalysts Enhanced by Different Amounts of MgO Used for CH4/CO2 Reforming", Energy Conversion and Management, vol. 97, pp. 273-281, 2015. [28] M. Sharifi, M. Haghighi, M. Abdollahifar, "Sono-Dispersion of Bimetallic Ni–Co over Zeolite Y Used in Conversion of Greenhouse Gases CH4/CO2 to High Valued Syngas", Journal of Natural Gas Science and Engineering, vol. 23, pp. 547-558, 2015. [29] S. M. Sajjadi, M. Haghighi, F. Rahmani, "Syngas Production from CO2-Reforming of CH4 over Sol-Gel Synthesized Ni-Co/Al2O3-MgO-ZrO2 Nanocatalyst: Effect of ZrO2 Precursor on Catalyst Properties and Performance", Química Nova, vol. 38, no. 4, pp. 459-465, 2015. [30] M. Abdollahifar, M. Haghighi, A. A. Babaluo, S. Khajeh Talkhoncheh, "Sono-Synthesis and Characterization of Bimetallic Ni-Co/Al2O3-MgO Nanocatalyst: Effects of Metal Content on Catalytic Properties and Activity for Hydrogen Production via CO2 Reforming of CH4", Ultrasonics Sonochemistry, vol. 31, pp. 173-183, 2016. [31] L. Yosefi, M. Haghighi, S. Allahyari, R. Shokrani, S. Ashkriz, "Abatement of Toluene from Polluted Air over Mn/Clinoptilolite-CeO2 Nanopowder: Impregnation vs. Ultrasound Assisted Synthesis with Various Mn-Loading", Advanced Powder Technology, vol. 26, no. 2, pp. 602-611, 2015. [32] S. Allahyari, M. Haghighi, A. Ebadi, H. Qavam Saeedi, "Direct synthesis of dimethyl ether as a green fuel from syngas over nanostructured CuO-ZnO-Al2O3/HZSM-5 catalyst: Influence of irradiation time on nanocatalyst properties and catalytic performance", Journal of Power Sources, vol. 272, pp. 929-939, 2014. [33] P. Estifaee, M. Haghighi, N. Mohammadi, F. Rahmani, "CO oxidation over sonochemically synthesized Pd-Cu/Al2O3 nanocatalyst used in hydrogen purification: Effect of Pd loading and ultrasound irradiation time", Ultrasonics Sonochemistry, vol. 21, no. 3, pp. 1155-1165, 2014.



فایل مقاله
تعداد بازدید: 895
تعداد دریافت فایل مقاله : 27



طراحی پرتال (طراحی پورتال): آرانا نتورکطراحی پرتال (طراحی پورتال): آرانا نتورک