فهرست

بررسی اثر حضور HPC بر حساسیت نانوذرات هسته/پوسته CeO2/TiO2 برای سنجش VOCs در دمای محیط

نشریه: سال سوم -شماره1- بهار 1395 - مقاله 3   صفحات :  17 تا 25



کد مقاله:
nm-168

مولفین:
سیدامیرعباس ذکریا


چکیده مقاله:

نانوذرات هسته/پوسته CeO2/TiO2 در حضور و عدم حضور هیدروکسی‌پروپیل‌سلولز طی فرآیند سه مرحله‌ای سنتز شد. تشکیل ساختار هسته/پوسته CeO2/TiO2 توسط طیف سنجی پراش پرتو ایکس XRD، طیف سنجی پراکندگی انرژی EDS و میکروسکوپ الکترونی روبشی انتشار میدانی FESEM تایید شد. نانوذرات حساسیت قابل توجهی را به ترکیبات آلی فرار در دمای اتاق و خواص سنجش انتخابی گاز را به نمایش گذاشته‌اند. نانوذرات هسته/پوسته CeO2/TiO2 در غلظت ppm340 در حضور و عدم حضور HPC به ترتیب 16 و 10 واحد حساسیت نشان دادند. زمان‌های پاسخ و بازیابی و درجه حرارت سنجش پایین به عنوان دیگر خواص بهبود یافته سنسورها اندازه‌گیری شد. مکانیسم سنجش نانوذرات براساس تغییر سد اتصال ناهمگن در رابط بین CeO2 و TiO2 شرح داده شد.


Article's English abstract:

Crystalline CeO2/TiO2 core/shell nanoparticles with and without hydroxypropyl cellulose were synthesized via a three-step process. The CeO2/TiO2 core/shell structure formation was confirmed by x-ray diffraction XRD, energy dispersive spectroscopy EDS and field emission scanning electron microscopy FESEM. The nanoparticles exhibited notable sensitivity to volatile organic compounds at room temperature and selective gas sensing properties. CeO2/TiO2 core/shell nanoparticles were showed at 340ppm of ethanol with and without HPC sensitivity 16 and 10 units, respectively. Short response and recovery times and low temperature sensing were measured as other improvement properties of the sensors. The sensing mechanism nanoparticles were explained based on the change of the heterojunction barrier formed at the interface of CeO2 and TiO2.


کلید واژگان:
سنسور گاز، نانوذرات اکسید فلزی نیمه هادی، هسته/پوسته، هیدروکسی پروپیل سلولز (HPC)

English Keywords:
gas sensor; metal oxide semiconductor nanoparticles; core/shell; hydroxypropyl cellulose (HPC)

منابع:

English References:
[1] R.K. Jain, M. Kapur, S. Labana, B. Lal, P.M. Sharma, D. Bhattacharya and I.S. Thakur, “Microbial diversity: Application of micro-organisms for the biodegradation of xenobiotics”, Curr. Sci., vol. 89, pp. 101-112, 2005. [2] S.E. Stanca, I.C. Popescu and L. Oniciu, “Biosensors for phenol derivatives using biochemical signal amplification”, Talanta, vol. 61, pp. 501-507, 2003. [3] S.B. Khan, M.M. Rahman, E.S. Jang, K. Akhtar and H. Han, “Special susceptive aqueous ammonia chemi-sensor: Extended applications of novel UV-curable polyurethane-clay nanohybrid”, Talanta, vol. 84, pp. 1005-1010, 2011. [4] M.M. Rahman, S.B. Khan, A. Jamal, M. Faisal and A.M. Asiri, “Fabrication of a methanol chemical sensor based on hydrothermally prepared ?-Fe2O3 co doped SnO2 nanocubes”, Talanta, vol. 95, pp. 18– 24, 2012. [5] M.M. Rahman, A. Jamal, S.B. Khan and M. Faisal, “Fabrication of chloroform sensor based on hydrothermally prepared low-dimensional ?-Fe2O3 nanoparticles”, Superlat. Microstruc., vol. 50, pp. 369–376, 2011. [6] S.B. Khan, M. Faisal, M.M. Rahman and A. Jamal, “Low-temperature growth of ZnO nanoparticles: Photocatalyst and acetone sensor”, Talanta, vol. 85, pp. 943– 949, 2011. [7] M. Faisal, S.B. Khan, M.M. Rahman, A. Jamal, A.M. Asiri and M.M. Abdullah, “Synthesis, characterizations, photocatalytic and sensing studies of ZnO nanocapsules”, Appl. Surf. Sci., vol. 58, pp. 672– 677, 2011 [8] M. Faisal, S.B. Khan, M.M. Rahman, A. Jamal, K. Akhtar and M.M. Abdullah, “Role of ZnO-CeO2 Nanostructures as a Photo-catalyst and Chemi-sensor”, J. Mater. Sci. Technol., vol. 27, Issu. 7, pp. 594-600, 2011. [9] M.M. Rahman, A. Jamal, S.B. Khan and M. Faisal, “Highly sensitive ethanol chemical sensor based on Ni-doped SnO2 nanostructure materials”, Biosens. Bioelectron., vol. 28, pp. 127– 134, 2011. [10] B. Huang, C. Zhao, M. Zhang, Z. Zhang, E. Xie,J. Zhou and W. Han,” Doping effect of In2O3on structural and ethanol-sensingcharacteristics of ZnO nanotubes fabricated by electrospinning”, Appl. Surf. Sci., vol. 349, pp. 615–621, 2015. [11] A. Kolmakov, D.O. Klenov, Y. Lilach, S. Stemmer and M. Moskovits, “Enhanced Gas Sensing by Individual SnO2 Nanowires and Nanobelts Functionalized with Pd Catalyst Particles”, Nano Lett., vol. 5, pp. 667-673, 2005. [12] F. Huang, Y.Y. Chen and T.T. Wu, “A room temperature surface acoustic wave hydrogen sensor with Pt coated ZnO nanorods”, Nanotechnology, vol. 20, pp. 065501, 2009. [13] J. Schalwig, G. Müller, U. Karrer, M. Eickhoff, O. Ambacher, M. Stutzmann, L. Görgens, and G. Dollinger, “Hydrogen response mechanism of Pt–GaN Schottky diodes”, Appl. Phys. Lett., vol. 80, pp. 1222, 2002. [14] M. Penza, C. Martucci and G. Cassano, “NOx gas sensing characteristics of WO3 thin films activated by noble metals (Pd, Pt, Au) layers”, Sens. Actuators B, vol. 50, pp. 52–59, 1998. [15] X. Xue, Z. Chen, C. Ma, L. Xing, Y. Chen, Y. Wang and T. Wang, “One-Step Synthesis and Gas-Sensing Characteristics of Uniformly Loaded Pt@SnO2 Nanorods”, J. Phys. Chem. C, vol. 114, pp. 3968–3972, 2010. [16] S. Gupta, S.V.N.T. Kuchibhatla, M.H. Engelhard, V. Shutthanandan, P. Nachimuthu, W. Jiang, L.V. Saraf, S. Thevuthasan and S. Prasad, “Influence of samaria doping on the resistance of ceria thin films and its implications to the planar oxygen sensing devices”, Sens. Actuators B, vol. 139, pp. 380–386, 2009. [17] N. Izu, T. Itoh, W. Shin, I. Matsubara and N. Murayama, “The effect of hafnia doping on the resistance of ceria for use in resistive oxygen sensors”, Sens. Actuators B, vol. 123, pp. 407–412, 2007. [18] C. Pijolat, G. Tournier and J.P. Viricelle, “Detection of CO in H2-rich gases with a samarium doped ceria (SDC) sensor for fuel cell applications”, Sens. Actuators B, vol. 141, pp. 7–12, 2009. [19] G. Neri, A. Bonavita, G. Rizzo, S. Galvagno, S. Capone and P. Siciliano, “A study of the catalytic activity and sensitivity to different alcohols of CeO2–Fe2O3 thin films”, Sens. Actuators B, vol. 111–112, pp. 78–83, 2005. [20] G. Neri, A. Bonavita, G. Rizzo, S. Galvagno, S. Capone and P. Siciliano, “Methanol gas-sensing properties of CeO2–Fe2O3 thin films”, Sens. Actuators B, vol. 114, pp. 687–695, 2006. [21] S.A. Ghom, C. Zamani, S. Nazarpour, T. Andreu and J.R. Morante, “Oxygen sensing with mesoporous ceria–zirconia solid solutions”, Sens. Actuators B, vol. 140, pp. 216–221, 2009. [22] J.H. Lee, “Gas sensors using hierarchical and hollow oxide nanostructures: Overview”, Sens. Actuators B, vol. 140, pp. 319–336, 2009. [23] N.V. Hieu, H.R. Kim, B.K. Ju and J.H. Lee, “Enhanced performance of SnO2 nanowires ethanol sensor by functionalizing with La2O3”, Sens. Actuators B, vol. 133, pp. 228–234, 2008. [24] U.S. Choi, G. Sakai, K. Shimanoe and N. Yamazoe, “Sensing properties of Au loaded SnO2–Co3O4 composites to CO and H2”, Sens. Actuators B, vol. 107, pp. 397–401, 2005. [25] S. Si, C. Li, X. Wang, Q. Peng and Y. Li, “Fe2O3/ZnO core–shell nanorods for gas sensors”, Sens. Actuators B, vol. 119, pp. 52–56, 2006. [26] Y.J. Chen, C.L. Zhu, L.J. Wang, P. Gao, M.S. Cao and X.L. Shi, “Synthesis and enhanced ethanol sensing characteristics of ?-Fe2O3/SnO2 core-shell nanorods”, Nanotechnology, vol. 20, pp. 045502, 2009. [27] C.L. Zhu, Y.J. Chen, R.X.Wang, L.J.Wang, M.S. Cao and X.L. Shi, “Synthesis and enhanced ethanol sensing properties of ?-Fe2O3/ZnO Heteronanostructures”, Sens. Actuators B, vol. 140, pp. 185–189, 2009. [28] Y.J. Chen, C.l. Zhu, X.l. Shi, M. Cao and H. Jin, “The synthesis and selective gas sensing characteristics of SnO2/?-Fe2O3 hierarchical nanostructures”, Nanotechnology, vol. 19, pp. 205603, 2008. [29] X. Xue, L. Xing, Y.J. Chen, S. Shi, Y. Wang and T. Wang, “Synthesis and H2S Sensing Properties of CuO-SnO2 Core/Shell PN-Junction Nanorods”, J. Phys. Chem. C, vol. 112, pp. 12157–12160, 2008. [30] Y.J. Chen, C.l. Zhu and T. Wang, “The enhanced ethanol sensing properties of multi-walled carbon nanotubes/SnO2 core/shell nanostructures”, Nanotechnology, vol. 17, pp. 3012–3017, 2006. [31] Y.J. Chen, C. L. Zhu and G Xiao, “Reduced-temperature ethanol sensing characteristics of flower-like ZnO nanorods synthesized by a sonochemical method”, Nanotechnology, vol. 17, pp. 4537–4541, 2006. [32] J. Gong, Y. Li, Z. Hu, Z. Zhou and Y. Deng, “Ultrasensitive NH3 Gas Sensor from Polyaniline Nanograin Enchased TiO2 Fibers”, J. Phys. Chem. C, vol. 114, pp. 9970–9974, 2010. [33] M. Law, H. Kind, B. Messer, F. Kim and P. Yang, “Photochemical Sensing of NO2 with SnO2 Nanoribbon Nanosensors at Room Temperature”, Angew. Chem. Int. Ed., vol. 41, pp. No. 13, 2002. [34] E. Comini , A. Cristalli, G. Faglia and G. Sberveglieri, “Light enhanced gas sensing properties of indium oxide and tin dioxide sensors”, Sens. Actuators B, vol. 65, pp. 260–263, 2000. [35] M. Yang, D. Wang1, L. Peng, T. Xie and Y. Zhao, “Photoelectric response mechanisms dependent on RuN3 and CuPc sensitized ZnO nanoparticles to oxygen gas”, Nanotechnology, vol. 17, pp. 4567–4571, 2006. [36] T.Y. Yang, H.M. Lin, B.Y. Wei, C.Y. Wu and C.K. Lin, “UV enhancement of the gas sensing properties of nano-TiO2”, Rev. Adv. Mater. Sci., vol. 4, pp. 48-54, 2003. [37] G. Kenanakis, D. Vernardou, E. Koudoumasa, G. Kiriakidis and N. Katsarakis, “Ozone sensing properties of ZnO nanostructures grown by the aqueous chemical growth technique”, Sens. Actuators B, vol. 124, pp. 187–191, 2007. [38] P. Feng, X. Y. Xue, Y. G. Liu, Q. Wan, and T. H. Wang, “Achieving fast oxygen response in individual ?-Ga2O3 nanowires by ultraviolet illumination”, Appl. Phys. Lett., vol. 89, pp. 112114, 2006. [39] L. Peng, D. Wang, M. Yang, T. Xie and Q. Zhao, “The characteristic of photoelectric gas sensing to oxygen and water based on ZnO nanoribbons at room temperature”, Appl. Surf. Sci., vol. 254, pp. 2856–2860, 2008. [40] B.P.J. de Lacy Costello, R.J. Ewen, N.M. Ratcliffe and M. Richards, “Highly sensitive room temperature sensors based on the UV-LED activation of zinc oxide nanoparticles”, Sens. Actuators B, vol. 134, pp. 945–952, 2008. [41] Y.J. Chen, G. Xiao, T.S. Wang, F. Zhang, Y. Ma, P. Gao, C.L. Zhu, E. Zhang, Z. Xu and Q.H. Li, “Synthesis and enhanced gas sensing properties of crystalline CeO2/TiO2 core/shell nanorods”, Sens. Actuators B, vol. 156, pp. 867– 874, 2011. [42] C. Wang, C. Shao, X. Zhang, Y. Liu, “SnO2 Nanostructures-TiO2 Nanofibers Heterostructures: Controlled Fabrication and High Photocatalytic Properties”, Inorganic Chemistry, vol. 48, pp. 7261–7268, 2009. [43] A. Pfau, K.D. Schierbaum, W. Göpel, “The electronic structure of CeO2 thin films: the influence of Rh surface dopants”, Surf. Sci., vol. 331-333, pp. 1479-1485, 1995. [44] T. Yu, B. Lim, Y. Xia, “Aqueous-Phase Synthesis of Single Crystal Ceria Nanosheets”, Angew. Chem. Int. Ed., vol. 49, pp. 4484 –4487, 2010. [45] A. Bejaoui, J. Guerin, K. Aguir, “Modeling of a p-type resistive gas sensor in the presence of a reducing gas”, Sens. Actuators B, vol. 181, pp. 340– 347, 2013.



فایل مقاله
تعداد بازدید: 938
تعداد دریافت فایل مقاله : 67



طراحی پرتال (طراحی پورتال): آرانا نتورکطراحی پرتال (طراحی پورتال): آرانا نتورک