فهرست

بررسی خواص فیزیکی و اثر فوتورسانایی نانوساختارهای CuO تهیه شده به روش اکسایش حرارتی

نشریه: بهار 1398 - مقاله 2   صفحات :  11 تا 18



کد مقاله:
nm-414

مولفین:
منیره جعفری: دانشگاه صنعتی شاهرود - دانشکده فیزیک
حسین عشقی: دانشگاه صنعتی شاهرود - دانشکده فیزیک


چکیده مقاله:

لایه¬های نازک اکسید مس بر روی زیرلایه ITO با استفاده از روش اکسایش حرارتی تهیه شدند. نمونه ها توسط لایه¬ای از مس به روش رونشانی بخار فیزیکی PVD در دو حالت ساخته شدند: در غیاب و حضور لایه چسبنده بر روی زیرلایه. نمونه¬ها با استفاده از تصاویر FESEM، طیف¬سنجی¬های XRD و UV-Vis. مورد مشخصه-یابی قرار گرفتند. دریافتیم در حالی که سطح نمونه ی بدون لایه چسبنده از دانه¬هایی نانومتری پوشیده شده، اما نمونه ی دیگر با لایه ی چسبنده از دانه¬هایی متخلخل و برجسته همراه با ریزدانه¬هایی در حدود nm30 و یا کوچکتر پوشیده شده است. طیف¬های XRD نمونه¬ها حاکی از ساختار بس¬بلوری در فاز مونوکلینیک با جهتگیری¬های ترجیحی 111 و "" 1 ̅"11" می¬باشد. در بین این نمونه¬ها، نمونه ی با لایه چسبنده از شرایط فیزیکی مناسب¬تری ابعاد بلورکی بزرگتر، گاف نواری کوچکتر و جذب نوری بیشتر برخوردار است. سرانجام، اثرفوتورسانایی در ساختار فلز-نیمرسانا-فلز MSM با استفاده از لامپ LED قرمز مورد بررسی قرار گرفت.


Article's English abstract:

Cupric oxide CuO thin films were synthesized on ITO substrate using thermal oxidation route. Samples were made using a Cu-layer deposited by PVD method in two cases: in the absence and presence of an adhesive oxide layer on the substrate. Samples were characterized by FESEM images, XRD and UV-Vis. spectra. We found that while the surface of the sample without adhesive layer is covered by nanograins, but sample with the adhesive layer is covered by rough nano-grains contained of very fine grains, about 30 nm or less. The XRD spectra of the samples indicated a polycrystalline structure in monoclinic phase with the main orientations of 111 and 1 ̅11. Among these samples, one with an adhesive layer has a better physical conditions i.e. bigger crystallite sizes, smaller band gap and higher optical absorbance. Finally, photoconductivity effect in metal-semiconductor-metal MSM structure was investigated using a red LED lamp.


کلید واژگان:
اکسید مس، اکسایش حرارتی، نانوساختار، اثر فوتورسانایی.

English Keywords:
Cupric oxide (CuO), Thermal oxidation, Nanostructure, Photoconductivity effect

منابع:
[1] A. Rakhshani, “Preparation, characteristics and photovoltaic properties of cuprous oxide—a review,” Solid-State Electronics, vol. 29, pp. 7-17, 1986. [2] B. Balamurugan and B. Mehta, “Optical and structural properties of nanocrystalline copper oxide thin films prepared by activated reactive evaporation,” Thin solid films, vol. 396, pp. 90-96, 2001. [3] J. Ghijsen, L. Tjeng, J. Van Elp, H. Eskes, J. Westerink, G. Sawatzky, “Electronic structure of Cu2O and CuO,” Physical Review B, vol. 38, p. 11322, 1988. [4] Y. K. Jeong and G. M. Choi, “Nonstoichiometry and electrical conduction of CuO,” Journal of Physics and Chemistry of Solids, vol. 57, pp. 81-84, 1996. [5] X. Zhao, P. Wang, Z. Yan, and N. Ren, “Room temperature photoluminescence properties of CuO nanowire arrays,” Optical Materials, vol. 42, pp. 544-547, 2015. [6] M. Kaur, K. Muthe, S. Despande, S. Choudhury, J. Singh, N. Verma, “Growth and branching of CuO nanowires by thermal oxidation of copper,” Journal of Crystal Growth, vol. 289, pp. 670-675, 2006. [7] H. Hsueh, T. Hsueh, S. Chang, T. Tsai, F. Hung, S. Chang, “CuO-nanowire field emitter prepared on glass substrate,” IEEE Transactions on Nanotechnology, vol. 10, pp. 1161-1165, 2011. [8] D. Arana‐Chavez, E. Toumayan, F. Lora, C. McCaslin, and R. A. Adomaitis, “Modeling the transport and reaction mechanisms of copper oxide CVD,” Chemical Vapor Deposition, vol. 16, pp. 336-345, 2010. [9] Q. Yang, Z. Guo, X. Zhou, J. Zou, and S. Liang, “Ultrathin CuO nanowires grown by thermal oxidation of copper powders in air,” Materials Letters, vol. 153, pp. 128-131, 2015. [10] V. Usha, S. Kalyanaraman, R. Thangavel, and R. Vettumperumal, “Effect of catalysts on the synthesis of CuO nanoparticles: Structural and optical properties by sol–gel method,” Superlattices and Microstructures, vol. 86, pp. 203-210, 2015. [11] T. Kosugi and S. Kaneko, “Novel Spray‐Pyrolysis deposition of cuprous oxide thin films,” Journal of the American Ceramic Society, vol. 81, pp. 3117-3124, 1998. [12] J. C. Felizco and E. Magdaluyo Jr, “Formation of Hierarchical CuO Nanostructures on Copper Foil by Chemical Bath Deposition for Applications in Superhydrophobic Surfaces,” in MATEC Web of Conferences, 2016. [13] C.-M. Tsai, G.-D. Chen, T.-C. Tseng, C.-Y. Lee, C.-T. Huang, W.-Y. Tsai, “CuO nanowire synthesis catalyzed by a CoWP nanofilter,” Acta Materialia, vol. 57, pp. 1570-1576, 2009. [14] X. Jiang, T. Herricks, and Y. Xia, “CuO nanowires can be synthesized by heating copper substrates in air,” Nano Letters, vol. 2, pp. 1333-1338, 2002. [15] K. M. Chahrour, N. M. Ahmed, M. Hashim, and A. M. Al-Diabat, “High Responsivity IR Photodetector Based on CuO Nanorod Arrays/AAO Assembly,” Procedia Chemistry, vol. 19, pp. 311-318, 2016. [16] H. Kidowaki, T. Oku, T. Akiyama, A. Suzuki, B. Jeyadevan, and J. Cuya, “Fabrication and characterization of CuO-based solar cells,” Journal of Materials Science Research, vol. 1, p. 138, 2012. [17] C. Zou, J. Wang, F. Liang, W. Xie, L. Shao, and D. Fu, “Large-area aligned CuO nanowires arrays: Synthesis, anomalous ferromagnetic and CO gas sensing properties,” Current Applied Physics, vol. 12, pp. 1349-1354, 2012. [18] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. Aplin, J. Park, “ZnO nanowire UV photodetectors with high internal gain,” Nano letters, vol. 7, pp. 1003-1009, 2007. [19] H. Hsueh, T. Hsueh, S. Chang, F. Hung, T. Tsai, W. Weng, (2011) "CuO nanowire-based humidity sensors prepared on glass substrate," Sensors and Actuators B: Chemical, vol. 156, pp. 906-911. [20] D. Gopalakrishna, K. Vijayalakshmi, and C. Ravidhas, “Effect of pyrolytic temperature on the properties of nano-structured Cuo optimized for ethanol sensing applications,” Journal of Materials Science: Materials in Electronics, vol. 24, pp. 1004-1011, 2013. [21] M. Fox, “Optical Properties of Solids” Oxford University Press, p. 4, 2001. [22] R.E. Marotti, P. Giorgi, G. Machado, E.A. Dalchiele, “Crystallite size dependence of band gap energy for electrodeposited ZnO grown at different temperatures” Solar Energy Materials

English References:
[1] A. Rakhshani, “Preparation, characteristics and photovoltaic properties of cuprous oxide—a review,” Solid-State Electronics, vol. 29, pp. 7-17, 1986. [2] B. Balamurugan and B. Mehta, “Optical and structural properties of nanocrystalline copper oxide thin films prepared by activated reactive evaporation,” Thin solid films, vol. 396, pp. 90-96, 2001. [3] J. Ghijsen, L. Tjeng, J. Van Elp, H. Eskes, J. Westerink, G. Sawatzky, “Electronic structure of Cu2O and CuO,” Physical Review B, vol. 38, p. 11322, 1988. [4] Y. K. Jeong and G. M. Choi, “Nonstoichiometry and electrical conduction of CuO,” Journal of Physics and Chemistry of Solids, vol. 57, pp. 81-84, 1996. [5] X. Zhao, P. Wang, Z. Yan, and N. Ren, “Room temperature photoluminescence properties of CuO nanowire arrays,” Optical Materials, vol. 42, pp. 544-547, 2015. [6] M. Kaur, K. Muthe, S. Despande, S. Choudhury, J. Singh, N. Verma, “Growth and branching of CuO nanowires by thermal oxidation of copper,” Journal of Crystal Growth, vol. 289, pp. 670-675, 2006. [7] H. Hsueh, T. Hsueh, S. Chang, T. Tsai, F. Hung, S. Chang, “CuO-nanowire field emitter prepared on glass substrate,” IEEE Transactions on Nanotechnology, vol. 10, pp. 1161-1165, 2011. [8] D. Arana?Chavez, E. Toumayan, F. Lora, C. McCaslin, and R. A. Adomaitis, “Modeling the transport and reaction mechanisms of copper oxide CVD,” Chemical Vapor Deposition, vol. 16, pp. 336-345, 2010. [9] Q. Yang, Z. Guo, X. Zhou, J. Zou, and S. Liang, “Ultrathin CuO nanowires grown by thermal oxidation of copper powders in air,” Materials Letters, vol. 153, pp. 128-131, 2015. [10] V. Usha, S. Kalyanaraman, R. Thangavel, and R. Vettumperumal, “Effect of catalysts on the synthesis of CuO nanoparticles: Structural and optical properties by sol–gel method,” Superlattices and Microstructures, vol. 86, pp. 203-210, 2015. [11] T. Kosugi and S. Kaneko, “Novel Spray?Pyrolysis deposition of cuprous oxide thin films,” Journal of the American Ceramic Society, vol. 81, pp. 3117-3124, 1998. [12] J. C. Felizco and E. Magdaluyo Jr, “Formation of Hierarchical CuO Nanostructures on Copper Foil by Chemical Bath Deposition for Applications in Superhydrophobic Surfaces,” in MATEC Web of Conferences, 2016. [13] C.-M. Tsai, G.-D. Chen, T.-C. Tseng, C.-Y. Lee, C.-T. Huang, W.-Y. Tsai, “CuO nanowire synthesis catalyzed by a CoWP nanofilter,” Acta Materialia, vol. 57, pp. 1570-1576, 2009. [14] X. Jiang, T. Herricks, and Y. Xia, “CuO nanowires can be synthesized by heating copper substrates in air,” Nano Letters, vol. 2, pp. 1333-1338, 2002. [15] K. M. Chahrour, N. M. Ahmed, M. Hashim, and A. M. Al-Diabat, “High Responsivity IR Photodetector Based on CuO Nanorod Arrays/AAO Assembly,” Procedia Chemistry, vol. 19, pp. 311-318, 2016. [16] H. Kidowaki, T. Oku, T. Akiyama, A. Suzuki, B. Jeyadevan, and J. Cuya, “Fabrication and characterization of CuO-based solar cells,” Journal of Materials Science Research, vol. 1, p. 138, 2012. [17] C. Zou, J. Wang, F. Liang, W. Xie, L. Shao, and D. Fu, “Large-area aligned CuO nanowires arrays: Synthesis, anomalous ferromagnetic and CO gas sensing properties,” Current Applied Physics, vol. 12, pp. 1349-1354, 2012. [18] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. Aplin, J. Park, “ZnO nanowire UV photodetectors with high internal gain,” Nano letters, vol. 7, pp. 1003-1009, 2007. [19] H. Hsueh, T. Hsueh, S. Chang, F. Hung, T. Tsai, W. Weng, (2011) "CuO nanowire-based humidity sensors prepared on glass substrate," Sensors and Actuators B: Chemical, vol. 156, pp. 906-911. [20] D. Gopalakrishna, K. Vijayalakshmi, and C. Ravidhas, “Effect of pyrolytic temperature on the properties of nano-structured Cuo optimized for ethanol sensing applications,” Journal of Materials Science: Materials in Electronics, vol. 24, pp. 1004-1011, 2013. [21] M. Fox, “Optical Properties of Solids” Oxford University Press, p. 4, 2001. [22] R.E. Marotti, P. Giorgi, G. Machado, E.A. Dalchiele, “Crystallite size dependence of band gap energy for electrodeposited ZnO grown at different temperatures” Solar Energy Materials



فایل مقاله
تعداد بازدید: 928
تعداد دریافت فایل مقاله : 40