فهرست

ساخت و طیف‌سنجی امپدانس الکتروشیمیایی الکترود شمارنده آلیاژی Pt1-xNix جهت کاربرد در سلول‌های خورشیدی رنگدانه‌ای

نشریه: سال چهارم -شماره1- بهار 1396 - مقاله 9   صفحات :  75 تا 86



کد مقاله:
nm-306

مولفین:
امیر بهرامی: دانشگاه شهید چمران اهواز - فیزیک
ایرج کاظمی نژاد: دانشگاه شهید چمران اهواز - بخش فیزیک
یاسر عبدی: دانشگاه تهران - گروه فیزیک


چکیده مقاله:

در این پژوهش، الکترودهای شمارنده لایۀ نازک آلیاژی Pt1-xNix با مقادیر متفاوت x به‌روش الکتروانباشت روی بستر FTO تهیه شدند. سپس ریخت لایه های مذکور توسط FESEM مورد آنالیز قرار گرفت. اثر میزان Ni موجود در لایه آلیاژی بر فعالیت الکتروکاتالیستی الکترودهای شمارنده بررسی گردید. با استفاده آنالیز داده‌های حاصل از ولتامتری چرخه ای CV و طیف‌سنجی‌ امپدانس الکتروشیمیایی EIS، مقاومت سری، مقاومت انتقال بار و عمر حامل های بار الکترودها تعیین شدند. نتایج نشان دادند که از میان الکترودهای تولید شده، الکترودهای Pt0.29Ni0.71 و Pt0.21Ni0.79 دارای بهترین فعالیت الکتروکاتالیستی هستند.


Article's English abstract:

In this research, Pt1-xNix thin alloy films counter electrodes with different value of x were fabricated using electrodeposition method on FTO substrate. Morphology of the electrodes was then analyzed via FESEM. The effect of Ni content in the alloy layer on electrocatalytic activity was investigated. Series resistance, transport resistance and career lifetime of the counter electrodes were determined using cyclic voltammetery and electrochemical impedance spectroscopic data analysis. The results showed that Pt0.29Ni0.71 and Pt0.21Ni0.79 electrodes have the best electrocatalytic activity between the products.


کلید واژگان:
الکترود شمارنده، آلیاژ Pt1-xNix، الکتروانباشت، ولتامتری چرخه‌ای، طیف‌سنجی امپدانس الکتروشیمیایی، سلول‌های خورشیدی رنگدانه‌ای

English Keywords:
Counter electrode, Pt1-xNix alloy films, Electrodeposition, Cyclic voltammetery, Electrochemical impedance spectroscopy, Dye-sensitized solar cell

منابع:
-

English References:
[1] S.-W. Rhee and W. Kwon, "Key technological elements in dye-sensitized solar cells (DSC)," Korean Journal of Chemical Engineering. vol. 28(7), pp. 1481-1494, 2011. [2] A. Mohammad Bagher, "Types of Solar Cells and Application," American Journal of Optics and Photonics. vol. 3(5), pp. 94, 2015. [3] M. Grätzel, "Dye-sensitized solar cells," J. Photochem.Photobio C: Photochem Rev. vol. 4(2), pp. 145-153, 2003. [4] A. Hagfeldt, et al., "Dye-Sensitized Solar," Chem. Rev., vol. 110, pp. 6595–6663, 2010. [5] J. Gong, J. Liang, and K. Sumathy, "Review on dye-sensitized solar cells (DSSCs): Fundamental concepts and novel materials," Renewable and Sustainable Energy Reviews. vol. 16(8), pp. 5848-5860, 2012. [6] S. Thomas, et al., "A review on counter electrode materials in dye-sensitized solar cells," J. Mater. Chem. A. vol. 2(13), pp. 4474-4490, 2014. [7] R. Irani, N. Naseri, and S. Beke, "A review of 2D-based counter electrodes applied in solar-assisted devices," Coordination Chemistry Reviews. vol. 324, pp. 54-81, 2016. [8] M. Wu and T. Ma, "Platinum-free catalysts as counter electrodes in dye-sensitized solar cells," ChemSusChem. vol. 5(8), pp. 1343-57, 2012. [9] M. Ye, et al., "Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes," Materials Today. vol., pp., 2014. [10] M. Wu and T. Ma, "Recent Progress of Counter Electrode Catalysts in Dye-Sensitized Solar Cells," The Journal of Physical Chemistry C. vol. 118(30), pp. 16727-16742, 2014. [11] D. Fu, P. Huang, and U. Bach, "Platinum coated counter electrodes for dye-sensitized solar cells fabricated by pulsed electrodeposition—Correlation of nanostructure, catalytic activity and optical properties," Electrochimica Acta. vol. 77, pp. 121-127, 2012. [12] S.-S. Kim, et al., "Electrodeposited Pt for cost-efficient and flexible dye-sensitized solar cells," Electrochimica Acta. vol. 51(18), pp. 3814-3819, 2006. [13] K. Yao and Y.F. Cheng, "Electrodeposited Ni–Pt binary alloys as electrocatalysts for oxidation of ammonia," Journal of Power Sources. vol. 173(1), pp. 96-101, 2007. [14] C.-Y. Lin, et al., "High-performance and low platinum loading electrodeposited-Pt counter electrodes for dye-sensitized solar cells," Electrochimica Acta. vol. 56(5), pp. 1941-1946, 2011. [15] J. Liu, et al., "Pulsed electrodeposition of Pt particles on indium tin oxide substrates and their electrocatalytic properties for methanol oxidation," Electrochimica Acta. vol. 100, pp. 164-170, 2013. [16] X. Fang, et al., "Performances characteristics of dye-sensitized solar cells based on counter electrodes with Pt films of different thickness," Journal of Photochemistry and Photobiology A: Chemistry. vol. 164(1-3), pp. 179-182, 2004. [17] Y.-L. Lee, et al., "A platinum counter electrode with high electrochemical activity and high transparency for dye-sensitized solar cells," Electrochemistry Communications. vol. 12(11), pp. 1662-1665, 2010. [18] M.V.F. Schlupp, et al., "Platinum Thin-Film Electrodes Prepared by a Cost-Effective Chemical Vapor Deposition Technique? " Advanced Engineering Materials. vol. 18(7), pp. 1200-1207, 2016. [19] G. Wang, et al., "A novel high-performance counter electrode for dye-sensitized solar cells," Electrochimica Acta. vol. 50(28), pp. 5546-5552, 2005. [20] S. Hao, et al., "Modification of photocathode of dye-sensitized nanocrystalline solar cell with platinum by vacuum coating, thermal decomposition and electroplating," Composite Interfaces. vol. 13(8-9), pp. 899-909, 2006. [21] A. Iefanova, et al., "Transparent platinum counter electrode for efficient semi-transparent dye-sensitized solar cells," Thin Solid Films. vol. 562(0), pp. 578-584, 2014. [22] M.A. Islam, M.A.K. Bhuiya, and M.S. Islam, "A Review on Chemical Synthesis Process of Platinum Nanoparticles," Asia Pacific Journal of Energy and Environment. vol. 1(2), pp. 107-120, 2014. [23] Q. Tang, et al., "Recent advances in alloy counter electrodes for dye-sensitized solar cells. A critical review," Electrochimica Acta. vol. 178, pp. 886-899, 2015. [24] B. He, et al., "Low-cost CoPt alloy counter electrodes for efficient dye-sensitized solar cells," Journal of Power Sources. vol. 260, pp. 180-185, 2014. [25] B. He, et al., "Cost?effective alloy counter electrodes as a new avenue for high?efficiency dye?sensitized solar cells," Electrochimica Acta. vol. 158, pp. 397-402, 2015. [26] H. Cai, et al., "PtRu nanofiber alloy counter electrodes for dye-sensitized solar cells," Journal of Power Sources. vol. 258, pp. 117-121, 2014. [27] H. Zhang, Q. Tang, and B. He, "Alloying of platinum and molybdenum for transparent counter electrodes. A strategy of enhancing power output for bifacial dye-sensitized solar cells," RSC Adv., vol. 5(64), pp. 51600-51607, 2015. [28] Y. Li, et al., "Cost-effective platinum alloy counter electrodes for liquid-junction dye-sensitized solar cells," Journal of Power Sources. vol. 305, pp. 217-224, 2016. [29] G. Syrrokostas, et al., "Degradation mechanisms of Pt counter electrodes for dye sensitized solar cells," Solar Energy Materials and Solar Cells. vol. 103, pp. 119-127, 2012. [30] P. Yang and Q. Tang, "A branching NiCuPt alloy counter electrode for high-efficiency dye-sensitized solar cell," Applied Surface Science. vol. 362, pp. 28-34, 2016. [31] J. Wan, et al., "Pt-Ni alloy nanoparticles as superior counter electrodes for dye-sensitized solar cells: experimental and theoretical understanding," Adv Mater. vol. 26(48), pp. 8101-6, 2014. [32] H. Li, et al., "Dissolution-resistant platinum alloy counter electrodes for stable dye-sensitized solar cells," Electrochimica Acta. vol. 190, pp. 409-418, 2016.



فایل مقاله
تعداد بازدید: 482
تعداد دریافت فایل مقاله : 9



طراحی پرتال (طراحی پورتال): آرانا نتورکطراحی پرتال (طراحی پورتال): آرانا نتورک