فهرست

اثر شرایط ساخت بر ساختار بلوری و مورفولوژی نانوساختارهای هیبریدی نانولوله کربنی- اکسید روی

نشریه: پاییز ۱۳۹۷ - مقاله 6   صفحات :  235 تا 245



کد مقاله:
nm-541

مولفین:
یاسمن رنجبر دونچالی: دانشگاه مازندران - دانشکده علوم پایه
محمد اکبرزاده پاشا: دانشگاه مازندران - دانشکده فیزیک
محمدجواد چایچی: دانشگاه مازندران - دانشکده شیمی


چکیده مقاله:

در این پژوهش نانو مواد هیبریدی نانولوله کربنی چند دیواره- اکسید رویMWCNT-ZnO به روش سل-ژل پلی یولی با استفاده از استات روی دوآبه ZnCH3COO2.2H2O و نانولوله کربنی عاملدار با گروه کربوکسیلCOOH و دو نوع حلال دی اتیلن گلیکول و گلیسیرین ساخته و تاثیر سه پارامتر نوع حلال، pH محیط و میزان آب افزودنی بر محصول نهایی بررسی شد. تمامی نانو مواد تهیه شده به وسیله آنالیزهای میکروسکوپ الکترونی روبشی گسیل میدانیFESEM، میکروسکوپ الکترونی عبوریTEM، طیف¬سنجی تبدیل فوریه مادون قرمزFTIR، طیف¬سنجی تفکیک انرژی پرتو ایکسEDX و پراش اشعه ایکسXRD مشخصه¬یابی شدند .در ساخت MWCNT-ZnO با استفاده از حلال دی اتیلن گلیکول مشاهده شد که با افزایش pH محلول، اندازه نانوذرات اکسید روی پوشش داده شده روی سطح نانولوله کربنی در ساختارهای هیبریدی بشدت کاهش و تعداد آن¬ها افزایش و پوشش یکنواخت¬تری ایجاد می¬شود. با تغییر حلال و استفاده از گلیسیرین در ساخت هیبرید مورفولوژی جدیدی شکل گرفته و اکسید روی بصورت نانوصفحات و نانوقطعات کریستالی تقریباً شش ضلعی به بدنه نانولوله های کربنی متصل می¬شود. با افزایش میزان آب دیونیزه حاضر در واکنش، فرآیند هیدرولیز افزایش یافته و اکسید روی بیشتری روی نانولوله‌ها نشست می¬کند.


Article's English abstract:

In this research, Carbon nanotubes-Zinc oxideCNT-ZnO hybrid nanomaterial was prepared by a polyol sol-gel method using zinc acetate ZnCH3COO2.H2O, functionalized CNT with carboxyl COOH group and two kind of solvent; diethylene glycolDEG and glycerolGLY and the effect of three synthesis parameter: kind of solvent, pH of solution and amount of additive water on properties of end-product hybrid was investigated. The synthesized nanomaterials were characterized by field emission scanning electron microscopy FESEM, Transmission electron microscopyTEM, Fourier transform infrared spectroscopy FTIR, energy dispersive X ray spectroscopy EDX and X ray diffraction XRD. In synthesis of hybrid structures using diethylene glycol, it was found that by increasing the PH of solution, the average size of ZnO nanoparticles deposited on CNT surfaces dramatically decreases and the number of them increases. Furthermore by increasing the PH of solution the uniformity of ZnO deposition was considerably improved. By changing the solvent and using glycerol a new morphology of hybrid structure was obtained and zinc oxide in form of nanosheets and hexagonal nanocrystal segments attached to the body of CNTs. By increasing the amount of deionized water, hydrolysis reaction and thus deposition of ZnO on CNTs’ body increases.


کلید واژگان:
نانولوله کربنی-اکسید روی، نانوساختار هیبریدی، سل ژل پلی‌یولی، pH محلول، نوع حلال

English Keywords:
CNT-ZnO, Hybrid structure, Polyol sol-gel, pH of solution, Solvent

منابع:
منابع و مقالات ارجاع شده در مقاله همه به زبان انگلیسی هستند.

English References:
[1] Iijima, Sumio. "Helical microtubules of graphitic carbon." nature 354, no. 6348 (1991): 56. [2] Yang, Minhao, Tao Liang, Yucai Peng, and Qing Chen. "Synthesis and characterization of a nanocomplex of ZnO nanoparticles attached to carbon nanotubes." Acta Physico-Chimica Sinica 23, no. 2 (2007): 145-151. [3] Eder, Dominik. "Carbon nanotube? inorganic hybrids." Chemical reviews 110, no. 3 (2010): 1348-1385. [4] Georgakilas, Vasilios, Konstantinos Kordatos, Maurizio Prato, Dirk M. Guldi, Michael Holzinger, and Andreas Hirsch. "Organic functionalization of carbon nanotubes." Journal of the American Chemical Society 124, no. 5 (2002): 760-761. [5] Fullam, Stephen, D. Cottell, H. Rensmo, and D. Fitzmaurice. "Carbon Nanotube Templated Self?Assembly and Thermal Processing of Gold Nanowires." Advanced materials 12, no. 19 (2000): 1430-1432. [6] Sun, Ya-Ping, Weijie Huang, Yi Lin, Kefu Fu, Alex Kitaygorodskiy, Lance A. Riddle, Y. Joy Yu, and David L. Carroll. "Soluble dendron-functionalized carbon nanotubes: preparation, characterization, and properties." Chemistry of Materials 13, no. 9 (2001): 2864-2869. [7] Endo, Morinobu, Yoong Ahm Kim, Masay Ezaka, Koji Osada, Takashi Yanagisawa, Takuya Hayashi, Marucio Terrones, and Mildred S. Dresselhaus. "Selective and efficient impregnation of metal nanoparticles on cup-stacked-type carbon nanofibers." Nano letters 3, no. 6 (2003): 723-726. [8] Han, Wei-Qiang, and A. Zettl. "Coating single-walled carbon nanotubes with tin oxide." Nano Letters 3, no. 5 (2003): 681-683. [9] Li, Xiaohong, Jiali Niu, Jin Zhang, Hulin Li, and Zhongfan Liu. "Labeling the defects of single-walled carbon nanotubes using titanium dioxide nanoparticles." The Journal of Physical Chemistry B 107, no. 11 (2003): 2453-2458. [10] Yu, Ying, Li-Li Ma, Wen-Ya Huang, Fei-Peng Du, C. Yu Jimmy, Jia-Guo Yu, Jian-Bo Wang, and Po-Keung Wong. "Sonication assisted deposition of Cu2O nanoparticles on multiwall carbon nanotubes with polyol process." Carbon 43, no. 3 (2005): 670-673. [11] Li, Yanhui, Jun Ding, Junfeng Chen, Cailu Xu, Bingqing Wei, Ji Liang, and Dehai Wu. "Preparation of ceria nanoparticles supported on carbon nanotubes." Materials research bulletin 37, no. 2 (2002): 313-318. [12] Osterloh, Frank E., Jason S. Martino, Hiroki Hiramatsu, and Daniel P. Hewitt. "Stringing up the Pearls: Self-Assembly, Optical and Electronic Properties of CdSe? and Au? LiMo3Se3 Nanoparticle? Nanowire Composites." Nano Letters 3, no. 2 (2003): 125-129. [13] Wang, Xiuying, Baiying Xia, Xingfu Zhu, Jiesheng Chen, Shilun Qiu, and Jixue Li. "Controlled modification of multiwalled carbon nanotubes with Zno nanostructures." Journal of Solid State Chemistry 181, no. 4 (2008): 822-827. [14] Sakata, Yusaku, Md Azhar Uddin, Akinori Muto, and Mutsuharu Imaoka. "Carbon-supported well-dispersed Cu-ZnO catalysts prepared from sawdust impregnated with [Cu (NO3) 2, Zn (NO3) 2] solution: catalytic activity in CO2 hydrogenation to methanol." Microporous materials 9, no. 3-4 (1997): 183-187. [15] Rao, Chintamani Nagesa Ramachandra, B. C. Satishkumar, A. Govindaraj, and Manashi Nath. "Nanotubes." ChemPhysChem 2, no. 2 (2001): 78-105. [16] Sun, Yi, Stephen R. Wilson, and David I. Schuster. "High dissolution and strong light emission of carbon nanotubes in aromatic amine solvents." Journal of the American Chemical Society 123, no. 22 (2001): 5348-5349. [17] Subramanian, Vaidyanathan, Eduardo E. Wolf, and Prashant V. Kamat. "Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration." Journal of the American Chemical Society 126, no. 15 (2004): 4943-4950. [18] Jiang, Linqin, and Lian Gao. "Fabrication and characterization of ZnO-coated multi-walled carbon nanotubes with enhanced photocatalytic activity." Materials Chemistry and Physics 91, no. 2-3 (2005): 313-316. [19] Wang, Zhong Lin. "Splendid one-dimensional nanostructures of zinc oxide: a new nanomaterial family for nanotechnology." Acs Nano 2, no. 10 (2008): 1987-1992. [20] Wang, Xuejing, Shuwen Yao, and Xiaobo Li. "Sol?gel Preparation of CNT/ZnO Nanocomposite and Its Photocatalytic Property." Chinese Journal of Chemistry 27, no. 7 (2009): 1317-1320. [21] Chen, Chih-Han, Shoou-Jinn Chang, Sheng-Po Chang, Meng-Ju Li, I-Cherng Chen, Ting-Jen Hsueh, and Cheng-Liang Hsu. "Novel fabrication of UV photodetector based on ZnO nanowire/p-GaN heterojunction." Chemical Physics Letters 476, no. 1-3 (2009): 69-72. [22] Akhavan, O., R. Azimirad, and S. Safa. "Functionalized carbon nanotubes in ZnO thin films for photoinactivation of bacteria." Materials Chemistry and Physics 130, no. 1-2 (2011): 598-602. [23] Oh, Eugene, Ho-Yun Choi, Seung-Ho Jung, Seungho Cho, Jae Chang Kim, Kun-Hong Lee, Sang-Woo Kang, Jintae Kim, Ju-Young Yun, and Soo-Hwan Jeong. "High-performance NO2 gas sensor based on ZnO nanorod grown by ultrasonic irradiation." Sensors and Actuators B: Chemical 141, no. 1 (2009): 239-243. [24] Ren, Xiangling, Dong Chen, Xianwei Meng, Fangqiong Tang, Xianquan Hou, Dong Han, and Lin Zhang. "Zinc oxide nanoparticles/glucose oxidase photoelectrochemical system for the fabrication of biosensor." Journal of colloid and interface science 334, no. 2 (2009): 183-187. [25] Umar, Ahmad, A. Al-Hajry, Y. B. Hahn, and D. H. Kim. "Rapid synthesis and dye-sensitized solar cell applications of hexagonal-shaped ZnO nanorods." Electrochimica Acta 54, no. 23 (2009): 5358-5362. [26] Bae, Seung Yong, Hee Won Seo, Hyun Chul Choi, Jeunghee Park, and Jucheol Park. "Heterostructures of ZnO nanorods with various one-dimensional nanostructures." The journal of physical chemistry B 108, no. 33 (2004): 12318-12326. [27] Koh, Yee Wee, Ming Lin, Chow Kim Tan, Yong Lim Foo, and Kian Ping Loh. "Self-assembly and selected area growth of zinc oxide nanorods on any surface promoted by an aluminum precoat." The Journal of Physical Chemistry B 108, no. 31 (2004): 11419-11425. [28] Sun, Jing, Lian Gao, and Mikio Iwasa. "Noncovalent attachment of oxide nanoparticles onto carbon nanotubes using water-in-oil microemulsions." Chemical Communications 7 (2004): 832-833. [29] Maeda, Kazuhiko, and Kazunari Domen. "Solid solution of GaN and ZnO as a stable photocatalyst for overall water splitting under visible light." Chemistry of Materials 22, no. 3 (2009): 612-623. [30] Li, Changqing, Zhong Jin, Haibin Chu, and Yan Li. "Seed-mediated growth of ZnO nanorods on multiwalled carbon nanotubes." Journal of nanoscience and nanotechnology 8, no. 9 (2008): 4441-4446. [31] Zhu, Lu-Ping, Gui-Hong Liao, Wen-Ya Huang, Li-Li Ma, Yang Yang, Ying Yu, and Shao-Yun Fu. "Preparation, characterization and photocatalytic properties of ZnO-coated multi-walled carbon nanotubes." Materials Science and Engineering: B 163, no. 3 (2009): 194-198. [32] Saleh, Tawfik A., M. A. Gondal, Q. A. Drmosh, Z. H. Yamani, and A. Al-Yamani. "Enhancement in photocatalytic activity for acetaldehyde removal by embedding ZnO nano particles on multiwall carbon nanotubes." Chemical Engineering Journal 166, no. 1 (2011): 407-412.



فایل مقاله
تعداد بازدید: 146
تعداد دریافت فایل مقاله : 5



طراحی پرتال (طراحی پورتال): آرانا نتورکطراحی پرتال (طراحی پورتال): آرانا نتورک