فهرست

مطالعۀ غیرخطیت اپتیکی مرتبۀ سوم نانوکامپوزیت اکسید گرافن- نیتروژن

نشریه: زمستان ۱۳۹۶ - مقاله 10   صفحات :  381 تا 392



کد مقاله:
nm-393

مولفین:
سلیمه کیمیاگر
سلیمه کیمیاگر: واخد تهران مرکز دانشگاه آزاد - فیزیک
فهیمه ابری نائی: دانشگاه آزاد اسلامی واحد تهران شرق - فیزیک


چکیده مقاله:

نانوکامپوزیت اکسید گرافن آلاییده با نیتروژن به روش هیدروترمال ساخته شد که در آن از اوره به عنوان عامل کاهنده استفاده شد. کاهش اکسید گرافن توسط نیتروژن با استفاده از آنالیزهای پراش اشعۀ X، میکروسکوپ الکترونی روبشی، طیف سنجی مرئی- فرابنفش، و طیف سنجی تبدیل فوریۀ مادون قرمز تأیید شد. فاصلۀ بین صفحات گرافن و گاف انرژی به ترتیب با استفاده از آنالیزهای پراش اشعۀ X و طیف سنجی مرئی- فرابنفش اندازه گیری شد و افزایش فاصلۀ بین صفحات و نیز پهن شدگی جزئی گاف انرژی در نتیجۀ افزایش نیتروژن را نشان داد. برای اولین بار پذیرفتاری اپتیک غیرخطی نانوکامپوزیت اکسید گرافن- نیتروژن توسط چیدمان روبش-z محاسبه شد و غیرخطیت اپتیکی مرتبۀ سوم را تأیید کرد. پذیرفتاری اپتیک غیرخطی از مرتبۀ esu 9-10 محاسبه شد که نشان دهندۀ قابلیت بالای این نمونه برای کاربرد در وسایل اپتوالکترونیک است.


Article's English abstract:

Nitrogen-doped graphene oxide N-GO nanocomposite synthesized by a hydrothermal method in which urea used as a reduction agent. The reduction of graphene oxide confirmed by the x-ray diffraction, scanning electron microscopy, fourier transform infrared and UV-VIS spectroscopy analyzes. The measurement of the distance between the sheets and energy band gap of the N-GO nanocomposite indicated an increasing in interspaces of sheets and a slight broadening in energy band gap due to adding of nitrogen. For the first time, the optical susceptibility of N-GO nanocomposite calculated via Z-scan technique and confirmed the third-order optical nonlinearity. The nonlinear optical susceptibility calculated in the order of 10-9 esu that shows the high efficiency of this nanocomposite for using in optoelectronic devices.


کلید واژگان:
نانوکامپوزیت اکسید گرافن آلاییده با نیتروژن، چیدمان روبش-z، خواص اپتیک غیرخطی

English Keywords:
Nitrogen-doped graphene oxide nanocomposite, Z-scan setup, Nonlinear optical properties

منابع:

English References:
[1] M. P. Kumar, T. Kesavan, G. Kalita, P. Ragupathy, T. N. Narayanan, D. K. Pattanayak, “On the Large Capacitance of Nitrogen Doped Graphene Derived by a Facile Route,” RSC Adv., vol. 4, pp. 38689-38697, 2014. [2] D. Du, P. Li, J. Ouyang, “Nitrogen-Doped Reduced Graphene oxide Prepared by Simultaneous Thermal Reduction and Nitrogen-Doping of Graphene Oxide in Air and Its Application as Electrocatalyst,” ACS Appl. Mater. Interfaces, vol. 7 (48), pp. 26952- 26958, 2015. [3] S. Li, W. Wang, X. Liu 1 , X. Zeng, W. Li, N. Tsubaki, S. Yu, “Nitrogen-Doped Graphene Nanosheets as Metal-Free Catalysts for Dehydrogenation Reaction of Ethanol,” RSC Adv., vol. 6, pp. 13450- 13455, 2016. [4] Y. Zhang, Z. Sun, H. Wang, Y. Wang, M. Liang, S. Xue, “Nitrogen-doped graphene as a cathode material for dye-sensitized solar cells: effects of hydrothermal reaction and annealing on electrocatalytic performance,” RSC Adv., vol. 5, pp. 10430- 10439, 2015. [5] B. P. Vinayan, Rupali Nagar, S. Ramaprabhu, “Solar light assisted green synthesis of palladium nanoparticle decorated nitrogen doped graphene for hydrogen storage application,” J. Mater. Chem. A, vol. 1, pp. 11192- 11199, 2013. [6] L. Li, Q. Liu, Y.-X. Wang, H.-Q. Zhao, C.-S. He, H.-Y. Yang, L. Gong, Y. Mu, H.-Q. Yu, “Facilitated biological reduction of nitroaromatic compounds by reduced graphene oxide and the role of its surface characteristics,” Sci. Rep., vol. 6(30082), pp. 1-10, 2016. [7] F. Zhanga, Z. Wanga, D. Wanga, Z. Wua, S. Wang, X. Xua, “Nonlinear optical effects in nitrogen–doped graphene,” RSC Adv., vol. 6, pp. 3526-3531, 2016. [8] S. Kimiagar, N. Rashidi, B. S. Witkowski, “Basic Blue 41 removal by microwave hydrothermal reactor reduced graphene oxide,” Desalin. Water Treat. vol. 57, pp. 27269–27278, 2016. [9] F. Abrinaei, “Laser ablation of magnesium in water and investigation of optical nonlinearity by z-scan technique,” J. Opt. Soc. Am. B, vol. 33, pp. 864-870, 2016. [10] F. Abrinaei, “Nonlinear optical response of Mg/MgO structures prepared by laser ablation method,” J. Eur. Opt. Soc.-Rapid, vol. 13:15, 2017, DOI 10.1186/s41476-017-0042-z. [11] S. D. Perera, R. G. Mariano, N. Nijem, Y. Chabal, J. P. Ferraris and K. J. Balkus, “Alkaline deoxygenated graphene oxide for supercapacitor applications: An effective green alternative for chemically reduced graphene,” J. Power Sources, vol. 215, pp. 1-10, 2012. [12] P. Liu, Y. Huang and L. Wang, “A facile synthesis of reduced graphene oxide with Zn powder under acidic condition,” Mater. Lett., vol. 91, pp. 125-128, 2013. [13] B.R. Rehani, P.B. Joshi, K.N. Lad, A. Pratap, “Crystallite size estimation of elemental and composite nano-powders using XRD principles,” Indian J. Pure Ap. Phy, vol. 44, pp. 157-161 2006. [14] K. Liu, J. J. Zhang, F. F. Cheng, T. T. Zheng, C. Wang and J. J. Zhu, “Green and facile synthesis of highly biocompatible graphene nanosheets and its application for cellular imaging and drug delivery,” J. Mater. Chem., vol. 21, pp. 12034-12040, 2011. [15] Y. Zhou, Q. Bao, L. A. L. Tang, T. Zhong and K. P. Loh, “Hydrothermal dehydration for the “green” reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties,” Chem. Mater., vol. 21(13), pp. 2950-2956, 2009. [16] Y. Han, Z. Luo, L. Yuwen, J. Tian, X. Zhu and L. Wang, “Synthesis of silver nanoparticles on reduced graphene oxide under microwave irradiation with starch as an ideal reductant and stabilizer,” Appl. Surf. Sci., vol. 266, 188-193, 2013. [17] J. Lim, J.R. Rani, K. Choi, J.H. Kim and S.C. Jun, “Optical modification of atomic thickness graphene oxide,” Int. Soc. Opt.Photon,doi:10.1117/2.1201210.004520. [18] S. Ameer, I. H. Gul, N. Mahmood and M. Mujahid, “Synthesis, characterization and optical properties of in situ ZnFe2O4 functionalized rGOnano hybrids through modified solvothermal approach,” Opt. Mater., vol. 45, pp. 69- 75, 2015. [19] H.-C. Hsu, I. Shown, h. Y Wei, Y. C. Chang, H. Y. Du, Y. G. Lin, C. A. Tseng, C. H. Wang, L. C. Chen, Y. C. Lind and K. H. Chen, “Graphene oxide as a promising photocatalyst for CO2 to methanol conversion,” Nanoscale, vol. 5(1), pp. 262-268, 2013. [20] E. EzzatpourGhadim, N. Rashidi, S. Kimiagar, O. Akhavan, F. Manouchehri and E. Ghaderi, “Pulsed laser irradiation for environment friendly reduction of graphene oxide suspensions,” Appl. Surf. Sci., vol. 301, pp. 183-188, 2014. [21] L.L. Tan, W.J. Ong, S.P. Chai, A. Mohamed, “Reduced graphene oxide-TiO2 nanocomposite as a promising visible-light-active photocatalyst for the conversion of carbon dioxide,” Nanoscale Res. Lett., vol. 8, pp. 465-474, 2013. [22] S. Sheshmani, M.A. Fashapoyeh, “Suitable Chemical Methods for Preparation of Graphene Oxide, Graphene and Surface Functionalized Graphene Nanosheets,” Acta Chim. Slov., vol. 60, pp. 813-825, 2013. [23] T.N. Huan, T. Van Khai, Y. Kang, K.B. Shim, H. Chung, “Enhancement of quaternary nitrogen doping of graphene oxide via chemical reduction prior to thermal annealing and an investigation of its electrochemical properties,” J. Mater. Chem., vol. 22, pp. 14756–14762, 2012. [24] M. Naebe, J. Wang, A. Amini, H. Khayyam, N. Hameed, L.H. Li, Y. Chen, B. Fox, “Mechanical Property and Structure of Covalent Functionalised Graphene/Epoxy Nanocomposites,” Sci. Rep., vol. 4 (4375), pp. 1–7, 2014. [25] M. Sathish, S. Mitani, T. Tomai, I. Honma, “Supercritical Fluid Assisted Synthesis of N-doped Graphene Nanosheets and Its Capacitance Behavior in Ionic liquid and Aqueous Electrolyte,” J. Mater. Chem. A, vol. 2, pp. 4731–4738, 2014. [26] Y. Li, K. Ye, K. Cheng, D. Cao, Y. Pan, S. Kong, X. Zhang, G. Wang, Anchoring CuO nanoparticles on nitrogen-doped reduced graphene oxide nanosheets as electrode material for supercapacitors J. Electroanal. Chem., vol. 727, pp. 154–162, 2014. [27] T. N. Ahipa, V. Kumar, D. S. Shankar Rao, S. K. Prasad, A. V. Adhikari, “New 4-(2-(4-alkoxyphenyl)-6-methoxypyridin-4-yl) benzonitriles: synthesis, liquid crystalline behavior and photo physical properties,” CrystEngComm, vol. 16, pp. 5573–5582, 2014. [28] M. Sheik-Bahae, A. A. Said and E. W. VanStryland, “High-sensitivity, single-beam n2 measurements,” Opt. Lett., vol. 14, pp. 955-957, 1989. [29] M. Sheik-bahae, A. A. Said, T. H. Wei, D. J. Hagan, E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. QE., vol. 26, pp. 760-769, 1990.



فایل مقاله
تعداد بازدید: 372
تعداد دریافت فایل مقاله : 21



طراحی پرتال (طراحی پورتال): آرانا نتورکطراحی پرتال (طراحی پورتال): آرانا نتورک